Study on the Development of a Cyclohexane Based Tripodal Molecular Device as "OFF-ON-OFF" pH Sensor and Fluorescent Iron Sensor

(E-pub Ahead of Print)

Author(s): Vijay Dangi , Minati Baral* , B. K. Kanungo .

Journal Name: Current Analytical Chemistry

Become EABM
Become Reviewer


Background: Iron is an essential transition metal which is indispensable for life processes like oxygen transport and metabolism, electron transfer etc. However, misregulated iron is responsible for disease like anemia, hemochromatosis, Alzheimer’s and Parkinson’s disease. In order to encounter these diseases, a better understanding is needed of its role in misregulation. Fluorescent iron sensors could help provide this information. The new chemosensor developed by linking a cyclohexane unit with three 8-hydroxyquinoline provides selective detection of iron in numerous biological and environmental samples.

Methods: The Uv-visible and fluorescence spectroscopy in combination with pH measurements will mainly be used for the study. Theoretical studies at DFT level will be used to validate the method and explain the theory behind the experiments.

Results: The study of electronic spectra of the chelator, HQCC, reveals the appearance of a band at 262 nm along with a weak band at 335 nm due to π- π* and n- π* transitions respectively. Upon excitation with 335 nm, the ligand fluoresces at 388 nm wavelength. The intensity of the emission was affected in presence of metal ions, with maximum deviation for Fe(III). Selectivity studies showed that Fe(III) is more selective as compared to the biologically relevant metal ions viz., Al(III), Fe(III), Cr(III), Co(II), Fe(II), Ni(II), Zn(II), Cu(II), Mn(II) and Pb(II). pH dependent studies implied that the fluorescence intensity was highest at pH ~8.0, whereas maximum quenching for iron-HQCC system was observed at pH 7.4. The binding studies from the B-H plot confirms the formation of 1:1 complex with association constant of 5.95 × 106. The results obtained from experiments were in agreement with that obtained from the DFT and TD-DFT studies.

Conclusion: A novel tripodal chelator based on 8-hydroxyquinoline and symmetric cyclohexane scaffold was successfully developed. In addition to the excellence of the ligand to be employed as a promising sensitive fluorescent probe for easy detection of Fe3+ions at the physiological pH with very low concentration (7.5 x 10-5 molL-1), the new ligand can be used as an OFF-ON-OFF pH sensor. Fe(III) encapsulation along with 1:1 ML-complexation formation have been established. Theoretical studies confirm a d-PET mechanism for the fluorescence quenching. DFT studies revealed that the neutral form of the ligand is less reactive than its protonated or the deprotonated form.

Keywords: Tripodal; Sensor; OFF-ON-OFF; DFT; ZINDO; PET

Rights & PermissionsPrintExport Cite as

Article Details

(E-pub Ahead of Print)
DOI: 10.2174/1573411015666190314154126
Price: $95

Article Metrics

PDF: 1