Polymeric Nanomicelles of Soluplus® as a Strategy for Enhancing the Solubility, Bioavailability and Efficacy of Poorly Soluble Active Compounds

Author(s): Rosario Pignatello*, Roberta Corsaro.

Journal Name: Current Nanomedicine
Formerly Recent Patents on Nanomedicine

Volume 9 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Soluplus® is a commercially available graft amphipathic copolymer consisting of polyvinyl caprolactam, polyvinyl acetate, and polyethyleneglycol (13% PEG 6000/57% vinyl caprolactam/30% vinyl acetate). Among the various applications of this solubilizer excipient, produced by BASF, such as the production of amorphous solid dispersions of insoluble drugs, Soluplus® has shown to be able to form nano-sized micelles in water or other aqueous solutions, characterized by a very small diameter and an exceptionally narrow size distribution. These formulations allow to improve the solubility and physical stability in aqueous media of poorly soluble drugs. This review summarizes the recent data from literature on the methods of production and characterization of drugloaded nanomicelles based on Soluplus®, highlighting the potential fields of therapeutic application.

Keywords: BCS, micelles, copolymer, drug delivery, nanomedicines, nanocarriers.

[1]
Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995; 12(3): 413-20.
[2]
Leermakers F, Eriksson JC, Lyklema H. Association colloids and their equilibrium modelling. In: Lyklema J, Ed Fundamentals in interface and colloid science, vol. V. Amsterdam: Elsevier. 2005; pp. 4.1-4.123.
[3]
Lutz JF, Laschewsky A. Multicompartmentmicelles: has the long-standing dream become a reality? Macromol Chem Phys 2005; 206: 5.
[4]
Rajeshwar BR, Gatla A, Rajesh G, Arjun N, Swapna M. Polymeric micelles: a nanoscience technology. Indo Am J Pharm Res 2011; 1(4): 351-63.
[5]
Soluplus®. BASF Technical Information sheet. http://www.pharma-ingredients.basf.com/(version: July 2010; last visit: August 2018)..
[6]
Linn M. In vitro characterization of the novel solubility enhancing excipient Soluplus®. Doctorate Thesis, University of Saarlandes 2011.https://publikationen. sulb.uni-saarland.de/handle/20.500.11880/22827
[7]
Alam MA, Al-Jenoobi FI, Al-mohizea AM. Commercially bioavailable proprietary technologies and their marketed products. Drug Discov Today 2013; 18(19-20): 936-49.
[8]
Alvarez-Rivera F, Fernandez-Villanueva D, Concheiro A, Alvarez-Lorenzo C. a-Lipoic acid in Soluplus® polymeric nanomicelles for ocular treatment of diabetes-associated corneal diseases. J Pharm Sci 2016; 105: 2855-63.
[9]
Wegmann M, Parola L, Bertera FM, et al. Novel carvedilol paediatricnanomicelle formulation: in-vitro characterization and in-vivo evaluation. J Pharm Pharmacol 2017; 69: 544-55.
[10]
Mogal P, Derle D. Soluplus as a potential enhancer of cefixime biopharmaceutical properties through solid dispersion prepared by different pharmaceutical interventions. Integr J Glob Health 2017; 1(2): 11.
[11]
Tanida S, Kurokawa T, Sato H, Kadota K, Tozuka Y. Evaluation of the micellization mechanism of an amphipathic graft copolymer with enhanced solubility of ipriflavone. Chem Pharm Bull 2016; 64: 68-72.
[12]
Bernabeu E, Gonzalez L, Cagel M, Gergic EP, Moretton MA, Chiappetta DA. Novel Soluplus®-TPGS mixed micelles for encapsulation of paclitaxel with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines. Colloids Surf B Biointerfaces 2016; 140: 403-11.
[13]
Dian L, Yu E, Chen X, et al. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 2014; 9(1): 2406.
[http://dx.doi.org/10.1186/ 1556-276X-9-684]
[14]
Zeng Y, Li S, Liu C, et al. Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect in vivo. Acta Pharmacol Sin 2017; 38(3): 424-33.
[15]
Guth F, Becker M, Buesen R, Kolter K. Bioavailability enhancement of itraconazole with solid solutions based on Soluplus®. Proc of the 39th CRS Annual Meeting. Québec City. July 15-18, 2012;
[16]
Bhuptani RS, Jain AS, Makhija DT, Jagtap AG, Hassan PAR, Nagarsenker MS. Soluplus based polymeric micelles and mixed micelles of lornoxicam: design, characterization and in vivo efficacy studies in rats. Indian J Pharm Educat Res 2016; 50: 277-86.
[17]
Guo C, Zhang Y, Yang Z, et al. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation. Sci Rep 2015; 5: 12968.
[18]
Lalatsa A, Emeriewen K, Protopsalti V, Skelton G, Saleh GM. Developing transcutaneous nanoenabledanaesthetics for eyelid surgery. Br J Ophthalmol 2016; 100(6): 871-6.
[19]
Saydam M, Cheng WP, Palmer N, et al. Nano-sized Soluplus® polymeric micelles enhance the induction of tetanus toxin neutralising antibody response following transcutaneous immunisation with tetanus toxoid. Vaccine 2017; 35(18): 2489-95.
[20]
Saleem K, Wani WA, Haque A, Milhotra A, Ali I. Nanodrugs: Magic bullets in cancer chemotherapy. Topics Anti-Cancer Res 2013; 2: 437-94.
[21]
Ali I, Lone MN, Suhail M, Mukhtar SD, Asnin L. Advances in nanocarriers for anticancer drugs delivery. Curr Med Chem 2016; 23(20): 2159-87.
[22]
Jin X, Zhou B, Xue L, San W. Soluplus® micelles as a potential drug delivery system for reversal of resistant tumor. Biomed Pharmacother 2015; 69: 388-95.
[23]
Varela-Garcia A, Concheiro A, Alvarez-Lorenzo C. Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability. Int J Pharm 2018; 552(1-2): 39-47.
[24]
Noh G, Keum T, Seo J-E, et al. Development and evaluation of a water soluble fluorometholone eye drop formulation employing polymeric micelle. Pharmaceutics 2018; 10: 208.
[25]
Li M, Xin M, Guo C, Lin G, Wu X. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev Ind Pharm 2017; 43(11): 1846-57.
[26]
Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113: 211-28.
[27]
Sobczyński J, Chudzik-Rząd B. Mixed micelles as drug delivery nanocarriers. In: Design and development of new nanocarriers. 2018; 9: pp. 331-64..
[28]
Ke Z, Zhang Z, Wu H, Jia X, Wang Y. Optimization and evaluation of Oridonin-loaded Soluplus®-Pluronic P105 mixed micelles for oral administration. Int J Pharm 2017; 518(1-2): 193-202.
[29]
Hou J, Sun E, Sun C, et al. Improved oral bioavailability and anticancer efficacy on breast cancer of paclitaxel via Novel Soluplus®-Solutol® HS15 binary mixed micelles system. Int J Pharm 2016; 512(1): 186-93.
[30]
Dian L-H, Hu Y-J, Lin J-Y, et al. Fabrication of paclitaxel hybrid nanomicelles to treat resistant breast cancer via oral administration. Int J Nanomedicine 2018; 2018: 719-31.
[31]
Cagel M, Bernabeu E, Gonzalez L, et al. Mixed micelles for encapsulation of doxorubicin with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines versus Doxil®. Biomed Pharmacother 2017; 95: 894-903.
[32]
Hu M, Zhang J, Ding R, Fu Y, Gong T, Zhang Z. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system. Drug Dev Ind Pharm 2017; 43(4): 687-97.
[33]
Wang LL, He DD, Wang SX, Dai YH, Ju JM, Zhao CL. Preparation and evaluation of curcumin-loaded self-assembled micelles. Drug Dev Ind Pharm 2018; 44(4): 563-9.
[34]
Ji S, Lin X, Yu E, et al. Curcumin-loaded mixed micelles: preparation, characterization, and in vitro antitumor activity. J Nanotechnol 2018; 9103120: 9.
[35]
Zhang Z, Cui C, Wei F, Lv H. Improved solubility and oral bioavailability of apigenin via Soluplus/Pluronic F127 binary mixed micelles system. Drug Dev Ind Pharm 2017; 43(8): 1276-82.
[36]
Zhao J, Xu Y, Wang C, et al. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy. Drug Dev Ind Pharm 2017; 43(7): 1197-204.
[37]
Ding Y, Wang C, Wang Y, et al. Development and evaluation of a novel drug delivery: Soluplus®/TPGS mixed micelles loaded with piperine in vitro and in vivo. Drug Dev Ind Pharm 2018; 44(9): 1409-16.
[38]
Xia D, Yu H, Tao J, et al. Supersaturated polymeric micelles for oral cyclosporine A delivery: the role of Soluplus–sodium dodecyl sulfate complex. Colloids Surf B Biointerfaces 2016; 141: 301-10.
[39]
Zhu C, Gong S, Ding J, et al. Supersaturated polymeric micelles for oral silybin delivery: the role of the Soluplus–PVPVA complex. Acta Pharm Sin B 2019; 9: 107-17.
[40]
Ju R-J, Mu L-M, Li X-T, Li C-Q, Cheng Z-J, Lu W-L. Development of functional docetaxel nanomicelles for treatment of brain glioma. Artif Cells Nanomed Biotechnol 2018; 8: 1-11.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 3
Year: 2019
Page: [184 - 197]
Pages: 14
DOI: 10.2174/2468187309666190314152451
Price: $58

Article Metrics

PDF: 15
HTML: 1
EPUB: 1
PRC: 1