Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Synthesis of Novel Tetra-Substituted Pyrazole Derivatives from 2,3- Furandione

Author(s): Hasan Genç*, Volkan Taşdemir, İsrafil Tozlu and Erdal Ögün

Volume 16, Issue 11, 2019

Page: [891 - 897] Pages: 7

DOI: 10.2174/1570178616666190314150302

Price: $65

Abstract

Synthesis of pyrazole-3-carboxylic acid was progressed via two different protocols, one of which is solid state. Pyrazole-3-carboxylic acid was converted into different derivatives such as ester, urea, amide and nitrile. The amide compound was converted to nitrile using SOCl2 and DMF. Solid state heating of carboxylic acid gave decarboxylated product. Cyclization of tetra-substituted pyrazole with hydrazines resulted in pyrazolopyridazinones. The antimicrobial activities of the synthesized pyrazole derivatives against Bacillus cereus, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, and Saccharomyces cerevisiae were evaluated. One of the pyrazole derivatives which possess nitro group showed antimicrobial activity in only B. cereus, a Gram-positive bacteria, with an MIC of 128 μg/mL.

Keywords: Cyclic oxalyl compounds, pyrazole, pyrazolopyridazinone, bioactivity, solid state, amide.

Graphical Abstract
[1]
(a) Chauhan, A.; Sharma, P.K.; Kaushik, N. Int. J. Chemtech Res., 2011, 3, 11.
(b) Yet, L.; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V. Taylor (Eds.), R.J.K. Pyrazoles, Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford, 2008, pp. 1-141.
(c) Fustero, S.; Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A. Chem. Rev., 2011, 111, 6984.
(d) Patel, K.S.; Raval, K.N.; Patel, S.P.; Patel, A.G.; Patel, S.V. Int. J. Pharma Bio Sci., 2012, 2, 170.
(e) Dudhe, R.; Sharma, P.K.; Verma, P.; Chaudhary, A. J. Adv. Sci. Res, 2011, 2, 10.
(f) Lobanov, P.S.; Dar’în, D.V. Chem. Heterocycl. Compd., 2013, 49, 507.
(g) Qingyun, R.; Xiaosong, T.; Hongwu, H. Curr. Org. Synth., 2011, 8, 752.
(h) Brulikova, L.; Hlavac, J. Beilstein J. Org. Chem., 2011, 7, 678.
iLamberth, C. Heterocycles, 2006, 68, 561.
[2]
(a) Jadhav, S.Y.; Shirame, S.P.; Kulkarni, S.D.; Patil, S.B.; Asale, S.K.; Bhosale, P.R.B. Bioorg. Med. Chem. Lett., 2013, 23, 2575.
(b) Caliskan, B.; Yilmaz, A.; Evren, I.; Menevse, S.; Ulugad, O.; Banoglu, E. Med. Chem. Res., 2013, 22, 782.
(c) Kaushik, D.; Kumar, R.; Ahmed Khan, S.; Chawla, G. Med. Chem. Res., 2012, 21, 3646.
[3]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Kamel, G.M.; Elshaier, Y.A.M.M.; El-Magd, M.A. Biochemistry, 2019, 82, 86-99.
[4]
Ahmed, M.H.; El-Hashash, M.A.; Marzouk, M.I.; El-Naggar, A.M. J. Het. Chem, 2019, 56, 114-123.
[5]
Khan, I. Eur. J. Med. Chem., 2019, 163, 636-648.
[6]
Gawandi, S.J.; Desai, V.G.; Shingade, S.G. Med. Chem. Res., 2019.
[http://dx.doi.org/10.1007/s00044-018-2282-x]
[7]
Panda, N.; Jena, A.K. J. Org. Chem., 2012, 77, 9401-9406.
[8]
Schmitt, D.C.; Taylor, A.P.; Flick, A.C.; Kyne, R.E. Org. Lett., 2015, 17, 1405-1408.
[9]
Harigae, R.; Moriyama, K.; Togo, H. J. Org. Chem., 2014, 79, 2049-2058.
[10]
Gosselin, F.; O’Shea, P.D.; Webster, R.A.; Reamer, R.A.; Tillyer, R.D.; Grabowski, E.J.J. Synlett, 2006, 3267-3270.
[11]
Schmidt, A.; Habeck, T.; Kindermann, M.K.; Nieger, M. J. Org. Chem., 2003, 68, 5977.
[12]
Ranatunge, R.R.; Augustyniak, M.; Bandarage, U.K.; Earl, R.A.; Ellis, J.L.; Garvey, D.S.; Janero, D.R.; Letts, L.G.; Martino, A.M.; Murty, M.G.; Richardson, S.K.; Schroeder, J.D.; Shumway, M.J.; Tam, S.W.; Trocha, A.M.; Young, D.V. J. Med. Chem., 2004, 47, 2180.
[13]
Sener, A.; Genc, H.; Tozlu, I.; Sener, M.K. Turk. J. Chem., 2004, 28, 659.
[14]
Bildirici, İ.; Şener, A.; Atalan, E.; Battal, A.; Genç, H. Med. Chem. Res., 2009, 18, 327.
[15]
Akçamur, Y.; Sener, A.; Ipekoglu, A.M.; Kollenz, G. J. Heterocycl. Chem., 1997, 34, 221.
[16]
Akçamur, Y.; Penn, G.; Ziegler, E.; Sterk, H.; Kollenz, G.; Peters, K.; Peters, E.M.; Von Schnering, H.G. Monatsh. Chem., 1986, 117, 231.
[17]
Braga, D.; D’Addario, D.; Polito, M. Organometallics, 2004, 23, 2810.
[18]
Menges, N.; Bildirici, İ. J. Chem. Sci., 2017, 129, 741-752.
[19]
Kamal, A.; Visweswarasastry, K.N.; Chandrasekhar, D.; Mani, G.S.; Adiyala, P.R.; Nanubolu, J.B.; Singarapu, K.K.; Andmaurya, R.A. J. Org. Chem., 2015, 80, 4325.
[20]
Frizzo, C.P.; Villetti, M.A.; Tier, A.Z.; Gindri, I.M.; Buriol, L.; Rosa, F.A.; Claramunt, R.M.; Sanz, D.; Martins, M.A.P. Thermochimica. Acta, 2013, 574, 63.
[21]
Joule, J.A.; Mills, K. Heterocyclic Chemistry; Blackwell: Oxford, 2000, pp. 1-150.
[22]
Matyus, P. J. Heterocycl. Chem., 1998, 35, 1075.
[23]
Reller, L.B.; Weinstein, M.; Jorgensen, J.H.; Ferraro, M.J. Clin. Infect. Dis., 2009, 49, 1749.
[24]
Chornous, V.; Bratenko, A.M.K.; Vovk, M.V.; Sidorchuk, I.I. Pharmaceutical. Chem. J., 2001, 4, 35.
[25]
Abunada, N.M.; Hamdi, M.; Hassaneen, W.; Nadia, G.; Kandile, E.; Miqdad, O. Molecules, 2008, 13, 1501.
[26]
Sarma, K.N.; Subha, M.C.S. Rao. K.C. Eur. J. Org. Chem., 2010, 7, 745.
[27]
Korkusuz, E.; Yıldırm, İ.; Albayrak, S. J. Chin. Chem. Soc., 2013, 60, 516.
[28]
Nepali, K. -Yun, Lee, H.; Liou, J.-Ping. J. Med. Chem., 2018.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00147]
[29]
Şener, A.; Eskinoba, S.; Bildirici, İ.; Genç, H.; Kasımoğulları, R.A. J. Heterocycl. Chem., 2007, 44, 337-341.
[30]
Bauer, A.W.; Kirby, W.M.; Sheris, M.; Turck, M. Amer. J.C. J. Clin. Pathol., 1966, 45, 493.
[31]
Franklin, R.; Wikler, M.A.; Alder, J.; Dudley, M.N.; Eliopoulos, G.M.; Ferraro, M.J.; Hardy, D.J.; Hecht, D.W.; Hindler, J.A.; Patel, J.B.; Powell, M.; J., Swenson. M.; Thomson, R.B.; Traczewski, M. M.; Turnidge, J.D.; Weinstein, M.P.; Zimmer, B.L.; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard 9th Edition,Clinical and Laboratory Standards Institute; , 2012, pp. 1-15.
[32]
Tewarı, A.K.; Mıshra, A. Bioorg. Med. Chem., 2001, 9, 715.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy