Suppression of TGF-β and ERK Signaling Pathways as a New Strategy to Provide Rodent and Non-Rodent Pluripotent Stem Cells

Author(s): Maryam Farzaneh, Zahra Derakhshan, Jamal Hallajzadeh, Neda Hosseini Sarani, Armin Nejabatdoust, Seyed Esmaeil Khoshnam*.

Journal Name: Current Stem Cell Research & Therapy

Volume 14 , Issue 6 , 2019

Become EABM
Become Reviewer


Stem cells are unspecialized cells and excellent model in developmental biology and a promising approach to the treatment of disease and injury. In the last 30 years, pluripotent embryonic stem (ES) cells were established from murine and primate sources, and display indefinite replicative potential and the ability to differentiate to all three embryonic germ layers. Despite large efforts in many aspects of rodent and non-rodent pluripotent stem cell culture, a number of diverse challenges remain. Natural and synthetic small molecules (SMs) strategy has the potential to overcome these hurdles. Small molecules are typically fast and reversible that target specific signaling pathways, epigenetic processes and other cellular processes. Inhibition of the transforming growth factor-β (TGF-β/Smad) and fibroblast growth factor 4 (FGF4)/ERK signaling pathways by SB431542 and PD0325901 small molecules, respectively, known as R2i, enhances the efficiency of mouse, rat, and chicken pluripotent stem cells passaging from different genetic backgrounds. Therefore, the application of SM inhibitors of TGF-β and ERK1/2 with leukemia inhibitory factor (LIF) allows the cultivation of pluripotent stem cells in a chemically defined condition. In this review, we discuss recently emerging evidence that dual inhibition of TGF-β and FGF signaling pathways plays an important role in regulating pluripotency in both rodent and non-rodent pluripotent stem cells.

Keywords: Stem cells, small molecules, TGF-β/Smad pathway, FGF4/ERK pathway, chemically defined condition, Pluripotent Stem Cells.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [466 - 473]
Pages: 8
DOI: 10.2174/1871527318666190314110529
Price: $58

Article Metrics

PDF: 25