4t-CHQ a Spiro-Quinazolinone Benzenesulfonamide Derivative Induces G0/G1 Cell Cycle arrest and Triggers Apoptosis Through Down-Regulation of Survivin and Bcl2 in the Leukemia Stem-Like KG1-a Cells

Author(s): Arezoo Rahimian, Majid Mahdavi*, Reza Rahbarghazi, Hojjatollah N. Charoudeh.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: Many experiments have revealed the anti-tumor activity of spiro-quinazolinone derivatives on different cell types. Exposing KG1-a cells to N-(4- tert- butyl- 4'- oxo- 1'H- spiro [cyclohexane- 1, 2'- quinazoline]- 3'(4'H)- yl)- 4- methyl benzenesulfonamide (4t-CHQ), as an active sub-component of spiroquinazolinone benzenesulfonamides, the experiment investigated the possible mechanisms that manifest the role of 4t-CHQ in leukemic KG1-a progenitor cells. Mechanistically, the inhibitory effects of 4t-CHQ on KG1-a cells emerge from its modulating function on the expression of Bax/Bcl2 and survinin proteins.

Methods: Cell viability was assessed using MTT assay. The IC50 value of cells was calculated to be 131.3μM, after 72h-incubation with 4t-CHQ, ranging from 10 to 150μM. Apoptotic changes were studied using Acridine Orange/Ethidium Bromide (AO/EB) staining. DNA fragmentation was analyzed by agarose gel electrophoresis method. To evaluate the percentage of apoptotic cells and cell growth dynamic apoptotic features, we performed Annexin V/PI double staining assay and cell cycle analysis by flow cytometry.

Results: According to the results, apoptosis induction was initiated by 4t-CHQ in the KG1-a cells (at IC50 value). Cell dynamic analysis revealed that the cell cycle at the G1 phase was arrested after treatment with 4t- CHQ. Western blotting analysis showed enhancement in the expression ratio of Bax/Bcl-2, while the expression of survinin protein decreased in a time-dependent manner in the KG1-a cells. According to the docking simulation data, the effectiveness of 4t-CHQ on KG1-a cells commenced by its reactions with the functional domain of BH3 and Bcl2 and BIR domains of survivin protein.

Conclusion: These results demonstrate a remarkable role of 4t- CHQ in arresting leukemia KG1-a stem cells both by induction of apoptosis as well as by down-regulating survivin and Bcl2 proteins.

Keywords: Apoptosis, spiro-quinazolinone, Bcl2, survivin, KG1-a cell, leukemia.

[1]
O’Donnell, M.R.; Abboud, C.N.; Altman, J.; Appelbaum, F.R.; Arber, D.A.; Attar, E.; Borate, U.; Coutre, S.E.; Damon, L.E.; Goorha, S.; Lancet, J.; Maness, L.J.; Marcucci, G.; Millenson, M.M.; Moore, J.O.; Ravandi, F.; Shami, P.J.; Smith, B.D.; Stone, R.M.; Strickland, S.A.; Tallman, M.S.; Wang, E.S.; Naganuma, M.; Gregory, K.M. Acute myeloid leukemia. JNCCN, 2012, 10, 984-1021.
[2]
Riether, C.; Schurch, C.M.; Ochsenbein, A.F. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ., 2015, 22, 187-198.
[3]
Guzman, M.L.; Allan, J.N. Leukemia stem cells in personalized medicine. Stem Cells, 2014, 32, 844-851.
[4]
Sperr, W.R.; Hauswirth, A.W.; Florian, S.; Ohler, L.; Geissler, K.; Valent, P. Human leukaemic stem cells: A novel target of therapy. Eur. J. Clin. Invest., 2004, 34, 31-40.
[5]
Ravandi, F.; Estrov, Z. Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clin. Cancer Res., 2006, 12, 340-344.
[6]
Koeffler, H.P.; Billing, R.; Lusis, A.J.; Sparkes, R.; Golde, D.W. An undifferentiated variant derived from the human acute myelogenous leukemia cell line (KG-1). Blood, 1980, 56, 265-273.
[7]
Furley, A.J.; Reeves, B.R.; Mizutani, S.; Altass, L.J.; Watt, S.M.; Jacob, M.C.; Van den Elsen, P.; Terhorst, C.; Greaves, M.F. Divergent molecular phenotypes of KG1 and KG1-a myeloid cell lines. Blood, 1986, 68, 1101-1107.
[8]
Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 1997, 3, 730-737.
[9]
She, M.; Niu, X.; Chen, X.; Li, J.; Zhou, M.; He, Y.; Le, Y.; Guo, K. Resistance of leukemic stem-like cells in aml cell line KG1-a to natural killer cell-mediated cytotoxicity. Cancer Lett., 2012, 318, 173-179.
[10]
Mobahat, M.; Narendran, A.; Riabowol, K. Survivin as a preferential target for cancer therapy. Int. J. Mol. Sci., 2014, 15, 2494-2516.
[11]
Ghasemian, M.; Mahdavi, M.; Zare, P.; Hosseinpour Feizi, M.A. Spiroquinazolinone-induced cytotoxicity and apoptosis in K562 human leukemia cells: Alteration in expression levels of Bcl-2 and bax. J. Toxicol. Sci., 2015, 40, 115-126.
[12]
Rahimi, R.; Mahdavi, M.; Pejman, S.; Zare, P.; Balalaei, S. Inhibition of cell proliferation and induction of apoptosis in K562 human leukemia cells by the derivative (3-npc) from dihydro-pyranochromenes family. ABP, 2015, 62, 83-88.
[13]
Hueso-Falcon, I.; Giron, N.; Velasco, P.; Amaro-Luis, J.M.; Ravelo, A.G.; Heras, B.D.L.; Hortelano, S.; Braun, A.E. Snthesis and induction of apoptosis signaling pathway of ent-kaurane derivatives. Bioorg. Med. Chem., 2010, 18, 1724-1735.
[14]
Nicholson, D.W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ., 1999, 6, 1028-1042.
[15]
Anderson, M.A.; Huang, D.; Roberts, A. Targeting Bcl2 for the treatment of lymphoid malignancies. Semin. Hematol., 2014, 51, 219-227.
[16]
Suman, S.; Pandey, A.; Chandna, S. An improved non-enzymatic “DNA ladder assay” for more sensitive and early detection of apoptosis. Cytotechnology, 2012, 64, 9-14.
[17]
Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled demolition at the cellular level. Nature, 2008, 9, 231-241.
[18]
Mahdavi, M.; Davoodi, J.; Zali, M.R.; Foroumadi, A. Concomitant activation of caspase-9 and down-regulation of IAP proteins as a mechanism of apoptotic death in HepG2, T47D, and HCT-116 cells upon exposure to a derivative from 4-aryl- 4H-chromenes family. Biomed. Pharmacother., 2011, 65, 175-182.
[19]
Alberti, C. Apoptosis induction by quinazoline-derived α1-blockers in prostate cancer cells: Biomolecular implications and clinical relevance. Eur. Rev. Med. Pharmacol. Sci., 2007, 11, 59-64.
[20]
Gong, J.; Traganos, F.; Darzynkiewic, Z. A selective procedure for dna extraction from apoptotic cells applicable for gel electrophoresis and flow cytometr. Anal. Biochem., 1994, 218, 314-319.
[21]
Zornig, M.; Hueber, A.; Baum, W.; Evan, G. Apoptosis regulators and their role in tumorigenesis. Biochim. Biophys. Acta, 2001, 1551, F1-F37.
[22]
Reed, J.C. Bcl-2 family proteins. Oncogene, 1998, 17, 3225-3236.
[23]
Adams, J.M.; Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci., 2001, 26, 61-66.
[24]
Doshi, J.M.; Tian, D.; Xing, C. Structure-activity relationship studies of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4h-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic bcl-2 proteins to overcome drug resistance in cancer. J. Med. Chem., 2006, 49, 7731-7739.
[25]
Kuwana, T.; Newmeyer, D.D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol., 2003, 15, 691-699.
[26]
Tzifi, F.; Economopoulou, C.; Gourgiotis, D.; Ardavanis, A.; Papageorgiou, S.; Scorilas, A. The role of Bcl2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv. Hematol., 2012, 2012Article ID 524308
[27]
Salvesen, G.S.; Duckett, C.S. IAP proteins: Blocking the road to death’s door. Nat. Rev. Mol. Cell Biol., 2002, 3, 401-410.
[28]
Hawkins, C.J.; Silke, J.; Verhagen, A.M.; Foster, R.; Ekert, P.G.; Ashley, D.M. analysis of candidate antagonists of IAP-mediated caspase inhibition using yeast reconstituted with the mammalian Apaf-1-activated apoptosis mechanism. Apoptosis, 2001, 6, 331-338.
[29]
Cheung, C.H.; Huang, C.C.; Tsai, F.Y.; Lee, J.Y.; Cheng, S.M.; Chang, Y.C.; Huang, Y.C.; Chen, S.H.; Chang, J.Y. Srvivin-biology and potential as a therapeutic target in oncology. OncoTargets Ther., 2013, 6, 1453-1462.
[30]
Bongiovanni, L.; Di Diodoro, F.; Salda, L.D.; Brachelente, C. On the role of survivin as a stem cell biomarker of canine hair follicle and related tumours. Vet. Dermatol., 2014, 25, 138-141.
[31]
Kanwar, J.R.; Mahidhara, G.; Roy, K.; Sasidharan, S.; Krishnakumar, S.; Prasad, N.; Sehgal, R.; Kanwar, R.K. FE-BLF nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine, 2015, 10, 35-55.
[32]
Weng, G.; Zeng, Y.; Huang, J.; Fan, J.; Guo, K. Curcumin enhanced busulfan-induced apoptosis through downregulating the expression of survivin in leukemia stem-like KG1-a cells. BioMed Res. Int., 2015, 2015630397
[33]
Tamm, I.; Wang, Y.; Sausville, E.; Scudiero, D.A.; Vigna, N.; Oltersdorf, T.; Reed, J.C. IAP-family protein survivin inhibits caspase activity and apoptosis induced by FAS (CD95), BAX, CASPASES, AND anticancer drugs. Cancer Res., 1998, 58, 5315-5320.
[34]
Mirza, A.; McGuirk, M.; Hockenberry, T.N.; Wu, Q.; Ashar, H.; Black, S.; Wen, S.F.; Wang, L.; Kirschmeier, P.; Bishop, W.R.; Nielsen, L.L.; Pickett, C.B.; Liu, S. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene, 2002, 21, 2613-2622.
[35]
Ambrosini, G.; Adida, C.; Altieri, D.C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med., 1997, 3, 917-921.
[36]
Marzaro, G.; Guiotto, A.; Chilin, A. Quinazoline derivatives as potential anticancer agents: A patent review (2007 - 2010). Expert Opin. Ther. Pat., 2012, 22, 223-252.
[37]
Tajbakhsh, M.; Ramezanpour, S.; Balalaie, S.; Bijanzadeh, H.R. Novel one-pot three-component reaction for the synthesis of functionalized spiroquinazolinones. J. Heterocycl. Chem., 2014, 52, 1559-1564.
[38]
Moulder, S.L.; Michael Yakes, F.; Muthuswamy, S.K.; Bianco, R.; Simpson, J.F.; Arteaga, C.L. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res., 2001, 61(24), 8887-8895.
[39]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[40]
Abdel Gawad, N.M.; Georgey, H.H.; Youssef, R.M.; El-Sayed, N.A. Synthesis and antitumor activity of some 2, 3-disubstituted quinazolin-4(3h)-ones and 4, 6- disubstituted-1, 2, 3, 4- tetrahydroquinazolin-2h-ones. Eur. J. Med. Chem., 2010, 45, 6058-6067.
[41]
Vijayakumar, K.; Ahamed, A.J.; Thiruneelakandan, G. Synthesis, antimicrobial, and anti-HIV1 activity of quinazoline-4 (3h)-one derivatives. J. Appl. Chem., 2013, 2013Article ID 387191
[42]
Mahdavi, M.; Mohseni Lavi, M.; Yekta, R.; Moosavi, M.A.; Nobarani, M.; Balalaei, S.; Arami, S.; Rashidi, M.R. Evaluation of the cytotoxic, apoptosis inducing activity and molecular docking of spiroquinazolinone benzamide derivatives in MCF-7 breast cancer cells. Chem. Biol. Interact., 2016, 260, 232-242.
[43]
Bertho, A.L.; Santiago, M.A.; Coutinho, S.G. Flow cytometry in the study of cell death. Mem. Inst. Oswaldo Cruz, 2000, 95, 429-433.
[44]
Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine early apoptotic cells using fluorescein labelled expression on annexin V. J. Immunol. Methods, 1995, 184, 39-51.
[45]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[46]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25, 1605-1612.
[47]
Nowar, R.M.; Osman, E.E.A.; Abou-Seri, S.M.; El Moghazy, S.M. Abou el ella, D.A. Therapeutic agents targeting apoptosis pathways with a focus on quinazolines as potent apoptotic inducers. J. Am. Sci., 2016, 12, 57-67.
[48]
Kortemme, T.; Baker, D. A simple physical model for binding energy hot spots in protein-protein complexes. PNAS, 2002, 99, 14116-14121.
[49]
Lutz, R.J. Role of the BH3 (Bcl-2 homology 3) domain in the regulation of apoptosis and bcl-2 related proteins. Biochem. Soc. Trans., 2000, 28, 51-56.
[50]
Porter, J.; Payne, A.; de Candole, B.; Ford, D.; Hutchinson, B.; Trevitt, G.; Turner, J.; Edwards, C.; Watkins, C.; Whitcombe, I.; Davis, J.; Stubberfield, C. Tetrahydroisoquinpline amide substituted phenyl pyrazoles as selective Bcl-2 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19, 230-233.
[51]
Xia, W.; Gerard, C.M.; Liu, L.; Baudson, N.M.; Ory, T.L.; Spector, N.L. Combining lapatinib (GW572016), a small molecule inhibitor of ERBB1 and erbB2 tyrosine kinases, with therapeutic anti-erbB2 antibodies enhances apoptosis of erbB2-overexpressing breast cancer cells. Oncogene, 2005, 24, 6213-6221.
[52]
Chiu, Y.J.; Hour, M.J.; Lu, C.C.; Chung, J.G.; Kuo, S.C.; Huang, W.W.; Chen, H.J.; Jin, Y.A.; Yang, J.S. Novel quinazoline HMJ-30 induces U-2 OS human osteogenic sarcoma cell apoptosis through induction of oxidative stress and up-regulation of ATM/p53 signaling pathway. J. Orthop. Res., 2011, 29(9), 1448-1456.
[53]
Sakamoto, S.; Kyprianou, N. Targeting anoikis resistance in prostate cancer metastasis. Mol. Aspects Med., 2010, 31, 205-214.
[54]
Oltval, Z.N.; Miliman, C.L.; Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a cinserved homolog, Bax, that accelerates programed cell death. Cell, 1993, 74, 609-619.
[55]
Duan, X.X.; Ou, J.S.; Li, Y.; Su, J.J.; Ou, C.; Yang, C.; Yue, H.F.; Ban, K.C. Dynamic expression of apoptosis-related genes during development of laboratory hepatocellular carcinoma and its relation to apoptosis. World J. Gastroenterol., 2005, 11, 4740-4744.
[56]
Yamamoto, H.; Ngan, C.Y.; Monden, M. Cancer cells survive with survivin. Cancer Sci., 2008, 99, 1709-1714.
[57]
Owens, T.W.; Gilmore, A.P.; Streuli, C.H.; Foster, F.M. Inhibitor of apoptosis proteins: Promising targets for cancer therapy. J. Carcinog. Mutagen., 2013, S14, pii: S14-004.
[58]
Carter, B.Z.; Milella, M.; Altieri, D.C.; Andreeff, M. Cytokine-regulated expression of survivin in myeloid leukemia. Blood, 2001, 97, 2784-2790.
[59]
Castelli, M.; Reiners, J.J.; Kessel, D. A mechanism for the pro-apoptotic activity of ursodeoxycholic acid: Effects on Bcl-2 conformation. Cell Death Differ., 2004, 11, 906-914.
[60]
Han, B.; Park, D.; Li, R.; Xie, M.; Owonikoko, T.K.; Zhang, G.; Sica, G.L.; Ding, C.; Zhou, J.; Magis, A.T.; Chen, Z.G.; Shin, D.M.; Ramalingam, S.S.; Khuri, F.R.; Curran, W.J.; Deng, X. Small-molecule Bcl2 BH4 antagonist for lung cancer therapy. Cancer Cell, 2015, 27, 852-863.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 11
Year: 2019
Page: [1340 - 1349]
Pages: 10
DOI: 10.2174/1871520619666190313165130
Price: $58

Article Metrics

PDF: 34
HTML: 2