A Brief Review on E-skin and its Multifunctional Sensing Applications

Author(s): Mariam Turki Almansoori, Xuan Li, Lianxi Zheng*.

Journal Name: Current Smart Materials

Volume 4 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Electronic skin (e-skin) is an artificial skin that mimics the sensing capabilities of human skin, which brings many potential applications in robotics, artificial intelligence, prosthetics, and health monitoring technologies. Many attempts associated with various mechanisms/approaches and materials/structures have been developed to match the e-skins to the particular functions of specific applications. Along the time, high sensitivity, mechanical flexibility/stretchability, multifunction, and large area are common driving forces in the research area. New materials, with a variety of structures and unique properties, offer a plenty of freedoms in designing and fabricating e-skins. Significant progress has been made in recently years. This paper firstly reviews the most recent progress on nanomaterial- based e-skins according to four major sensing mechanisms, with an emphasis on the effects of various materials on the sensitivity and stretchability of e-skins. Then the paper updates the progress and effort with respect to multifunctional e-skins and organic-thin-film-transistor based large-area e-skins. Further development possibilities are also briefly discussed.

Keywords: e-Skin, flexible electronics, motion monitoring, nanomaterial, pressure sensor, tactile sensor.

[1]
Hammock, M.L.; Chortos, A.; Tee, B.C.K.; Tok, J.B.H.; Bao, Z.N. The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv. Mater., 2013, 42, 5997-6037.
[2]
Chortos, A.; Bao, Z.N. Skin-inspired electronic devices. Mater. Today, 2014, 17, 321-331.
[3]
Seminara, L.; Pinna, L.; Ibrahim, A.; Noli, L.; Capurro, M.; Caviglia, S.; Gastaldo, P.; Valle, M. Electronic skin: Achievements, issues and trends. Proc. Technol., 2014, 15, 549-558.
[4]
Harmon, L. Automated tactile sensing. Int. J. Robot. Res., 1982, 1, 3-32.
[5]
Tiwana, M.I.; Redmond, S.J.; Lovell, N.H. A review of tactile sensing technologies with applications in biomedical engineering. Sens. Actuators A Phys., 2012, 179, 17-31.
[6]
Gong, S.; Lai, D.; Su, B.; Si, K.; Ma, Z.; Yap, L.; Guo, P.; Cheng, W. Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater., 2015, 1, 1400063.
[7]
Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z. Recent progress in electronic skin. Adv. Sci., 2018, 2, 1500169.
[8]
Dolbashid, A.S.; Mokhtar, M.S.; Muhamad, F.; Ibrahim, F. Potential applications of human artificial skin and electronic skin (e-skin): A review. Bioinspir. Biomim. Nanobiomater., 2018, 1, 53-64.
[9]
Núñez, C.; Navaraj, W.; Polat, E.; Dahiya, R. Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater., 2017, 27, 1606287.
[10]
Chen, H.; Miao, L.; Su, Z.; Song, Y.; Han, M.; Chen, X.; Cheng, X.; Chen, D.; Zhang, H. Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy, 2017, 40, 65-72.
[11]
Franceschi, M.; Seminara, L.; Pinna, L.; Valle, M.; Ibrahim, A.; Dosen, S. Towards the integration of e-skin into prosthetic devices. In: Research in Microelectronics and Electronics (PRIME), Proceedings of IEEE 12th International Conference on PhD,2016, pp. 1-4.
[12]
Dahiya, R. Large area electronic skin. Proceedings of 15th IEEE Sensors Conference, Orlando, FL, 2016.
[13]
Benight, S.; Wang, C.; Tok, J.; Bao, Z. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci., 2013, 38, 1961-1977.
[14]
Bao, Z.N. Skin-inspired organic electronic materials and devices. MRS Bull., 2016, 41, 897-902.
[15]
Chen, S.; Jiang, K.; Lou, Z.; Chen, D.; Shen, G.Z. Recent developments in graphene-based tactile sensors and e-skins. Adv. Mater. Technol, 2018, 2, 1700248.
[16]
Ravi, S.K.; Wu, T.; Udayagiri, V.S.; Vu, X.M.; Wang, Y.N.; Jones, M.R.; Tan, S.C. Photosynthetic bioelectronics sensors for touch perception, UV-detection, and nanopower generation: Toward self-powered e-skins. Adv. Mater., 2018, 39, 1802290.
[17]
Nunez, C.G.; Taube, W.; Liang, X.P.; Dahiya, R. Live demonstration: Energy autonomous electronic skin for robotics. Proceedings of 16th IEEE Sensors Conference, 2017, pp. 475-475.
[18]
You, I.; Kim, B.; Park, J.; Koh, K.; Shin, S.; Jung, S.; Jeong, U. Stretchable e-skin apexcardiogram sensor. Adv. Mater., 2016, 28, 6359-6364.
[19]
Wu, J.F.; Wang, H.T.; Su, Z.W.; Zhang, M.H.; Hu, X.D.; Wang, Y.; Wang, Z.; Zhong, B.; Zhou, W.; Liu, J.; Xing, S.G. Highly flexible and sensitive wearable e-skin based on graphite nanoplatelet and polyurethane nanocomposite films in mass industry production available. ACS Appl. Mater. Interfaces, 2017, 44, 38745-38754.
[20]
Park, J.B.; Belharouak, I.; Lee, Y.J.; Sun, Y.K. A carbon-free ruthenium oxide/mesoporous titanium dioxide electrode for lithium-oxygen batteries. J. Power Sources, 2015, 295, 299-304.
[21]
Huang, Y.; Zhang, J.Y.; Pu, J.F.; Guo, X.H.; Qiu, J.H.; Ma, Y.M.; Zhang, Y.G.; Yang, X.M. Resistive pressure sensor for high-sensitivity e-skin based on porous sponge dip-coated CB/MWCNTs/SR conductive composites. Mater. Res. Express, 2018, 5, 065701.
[22]
Dos Santos, A.; Pinela, N.; Alves, P.; Santos, R.; Fortunato, E.; Martins, R.; Aguas, H.; Igreja, R. Piezoresistive e-skin sensors produced with laser engraved molds. Adv. Electron. Mater., 2018, 4, 1800182.
[23]
Samad, Y.A.; Li, Y.Q.; Alhassan, S.M.; Liao, K. Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl. Mater. Interfaces, 2015, 7, 9195-9202.
[24]
Wang, H.; Lu, W.B.; Di, J.T.; Li, D.; Zhang, X.H.; Li, M.; Zhang, Z.G.; Zheng, L.X.; Li, Q.W. Ultra-lightweight and highly adaptive all-carbon elastic conductors with stable electrical resistance. Adv. Funct. Mater., 2017, 27, 1606220.
[25]
Cai, L.; Song, L.; Luan, P.; Zhang, Q.; Zhang, N.; Gao, Q.; Zhao, D.; Zhang, X.; Tu, M.; Yang, F.; Zhou, W. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci. Rep., 2013, 3, 3048.
[26]
Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J.H.; Pang, C.; Son, S.; Kim, J.H.; Jang, Y.H.; Kim, D.E.; Lee, T. Conductive fiber based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater., 2015, 27, 2433-2439.
[27]
Ho, D.H.; Song, R.; Sun, Q.J.; Park, W.H.; Kim, S.Y.; Pang, C.; Kim, D.H.; Kim, S.Y.; Lee, J.; Cho, J.H. Crack-enhanced microfluidic stretchable e-skin sensor. ACS Appl. Mater. Interfaces, 2017, 51, 44678-44686.
[28]
Tien, N.T.; Jeon, S.; Kim, D.I.; Trung, T.Q.; Jang, M.; Hwang, B.U.; Byun, K.E.; Bae, J.; Lee, E.; Tok, J.B.; Bao, Z. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater., 2014, 26, 796-804.
[29]
An, J.N.; Le, T.S.D.; Huang, Y.; Zhan, Z.; Zheng, L.; Huang, W.; Sun, G.; Kim, Y.J. All-graphene-based highly flexible noncontact electronic skin. ACS Appl. Mater. Interfaces, 2017, 9, 44593-44601.
[30]
Ghosh, S.K.; Adhikary, P.; Jana, S.; Biswas, A.; Sencadas, V.; Gupta, S.D.; Tudu, B.; Mandal, D. Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy, 2017, 36, 166-175.
[31]
Sultana, A.; Ghosh, S.K.; Sencadas, V.; Zheng, T.; Higgins, M.J.; Middya, T.R.; Mandal, D. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-L-lactic acid nanofibers for non-invasive physiological signal monitoring. J. Mater. Chem. B, 2017, 5(35), 7352-7359.
[32]
Dutta, B.; Kar, E.; Bose, N.; Mukherjee, S. NiO@SiO2/PVDF: A flexible polymer nanocomposite for a high performance human body motion-based energy harvester and tactile e-skin mechanosensor. ACS Sustain. Chem.& Eng., 2018, 6, 10505-10516.
[33]
Xue, X.; Qu, Z.; Fu, Y.; Yu, B.; Xing, L.; Zhang, Y. Self-powered electronic-skin for detecting glucose level in body fluid basing on piezo-enzymatic-reaction coupling process. Nano Energy, 2016, 26, 148-156.
[34]
Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7, 9533-9557.
[35]
Zhu, G.; Pan, C.F.; Guo, W.X.; Chen, C.Y.; Zhou, Y.H.; Yu, R.M.; Wang, Z.L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett., 2012, 12, 4960-4965.
[36]
Ma, M.; Zhang, Z.; Liao, Q.; Yi, F.; Han, L.; Zhang, G.; Liu, S.; Liao, X.; Zhang, Y. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy, 2017, 32, 389-396.
[37]
Jiang, X.Z.; Sun, Y.J.; Fan, Z.; Zhang, T.Y. Integrated flexible, waterproof, transparent, and self-powered tactile sensing panel. ACS Nano, 2016, 10, 7696-7704.
[38]
Suen, M.; Lin, Y.; Chen, R. A flexible multifunctional tactile sensor using interlocked zinc oxide nanorod arrays for artificial electronic skin. Sens. Actuators A Phys., 2018, 269, 574-584.
[39]
Chen, H.; Song, Y.; Cheng, X.; Zhang, H. Self-powered electronic skin based on the triboelectric generator. Nano Energy, 2019, 56, 252-268.
[40]
Seminara, L.; Pinna, L.; Ibrahim, A.; Noli, L.; Caviglia, S.; Gastaldo, P.; Valle, M. Towards integrating intelligence in electronic skin. Mechatronics, 2016, 34, 84-94.
[41]
Heidari, H.; Núñez, C.; Dahiya, R. E-skin module with heterogeneously integrated graphene touch sensors and CMOS circuitry. Proceedings of 15th IEEE Sensors Conference, Orlando, FL2016.
[42]
Zhao, G.; Zhang, X.; Cui, X.; Wang, S.; Liu, Z.; Deng, L.; Qi, A.; Qiao, X.; Li, L.; Pan, C.; Zhang, Y. Piezoelectric polyacrylonitrile nanofiber film-based dual-function self-powered flexible sensor. ACS Appl. Mater. Interfaces, 2018, 10, 15855-15863.
[43]
Yuan, W.; Yang, J.; Yang, K.; Peng, H.; Yin, F. High-performance and multifunctional skinlike strain sensors based on graphene/spring-like mesh network. ACS Appl. Mater. Interfaces, 2018, 10, 19906-19913.
[44]
Wang, C.Y.; Xia, K.L.; Zhang, M.C.; Jian, M.Q.; Zhang, Y.Y. An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection. ACS Appl. Mater. Interfaces, 2017, 9, 39484-39492.
[45]
Lou, Z.; Chen, S.; Wang, L.L.; Shi, R.L.; Li, L.; Jiang, K.; Chen, D.; Shen, G.Z. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. NANO Energ., 2017, 38, 28-35.
[46]
Bermudez, G.S.C.; Karnaushenko, D.D.; Karnaushenko, D.; Lebanov, A.; Bischoff, L.; Kaltenbrunner, M.; Fassbender, J.; Schmidt, O.G.; Makarov, D. Magnetosensitive e-skins with directional perception for augmented reality. Sci. Adv.,2018, 1, eaao2623.
[47]
He, H.; Fu, Y.; Zang, W.; Wang, Q.; Xing, L.; Zhang, Y.; Xue, X. A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy, 2017, 31, 37-48.
[48]
Li, M.; Wang, Y.; Zhang, Y.; Zhou, H.; Huang, Z.; Li, D. Highly flexible and stretchable MWCNT/HEPCP nanocomposites with integrated near-IR, temperature and stress sensitivity for electronic skin. J. Mater. Chem. C, 2018, 6, 5877-5887.
[49]
Kim, S.W.; Lee, Y.; Park, J.; Kim, S.; Chae, H.; Ko, H.; Kim, J.J. A triple-mode flexible e-skin sensor interface for multi-purpose wearable applications. Sensors (Basel), 2018, 18, 78.
[50]
Dos Santos, A.; Pinela, N.; Alves, P.; Santos, R.; Fortunato, E.; Martins, R.; Aguas, H.; Igreja, R. Piezoresistive e-skin sensors produced with laser engraved molds. Adv. Electron. Mater., 2018, 4, 1800182.
[51]
You, I.; Choi, S.E.; Hwang, H.; Han, S.W.; Kim, J.W.; Jeong, U. E-skin tactile sensor matrix pixelated by position-registered conductive microparticles creating pressure-sensitive selectors. Adv. Funct. Mater., 2018, 28, 1801858.
[52]
Samad, Y.A.; Komatsu, K.; Yamashita, D.; Li, Y.Q.; Zheng, L.X.; Alhassan, S.M.; Nakano, Y.; Liao, K. From sewing thread to sensor: Nylon fiber strain and pressure sensors. Sens. Actuators B Chem., 2017, 240, 1073-1090.
[53]
Khalid, H.R.; Nam, I.W.; Choudhry, I.; Zheng, L.; Lee, H.K. Piezoresistive characteristics of CNT fiber-incorporated GFRP composites prepared with diversified fabrication schemes. Compos. Struct., 2018, 203, 835-843.
[54]
Lou, Z.; Chen, S.; Wang, L.; Jiang, K.; Shen, G. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23, 7-14.
[55]
Li, H.; Sinha, T.K. Lee. J.; Oh, J.S.; Ahn, Y.; Kim, J.K. Melt-compounded keratin-TPU self-assembled composite film as bioinspired e-skin. Adv. Mater. Interfaces, 2018, 5, 1800635.
[56]
Wang, S.; Gong, L.P.; Shang, Z.J.; Ding, L.; Yin, G.S.; Jiang, W.Q.; Gong, X.L.; Xuan, S.H. Novel safeguarding tactile e-skins for monitoring human motion based on SST/PDMS-AgNW-PET hybrid structures. Adv. Funct. Mater., 2018, 28, 1707538.
[57]
Li, Y.; Chen, S.S.; Wu, M.C.; Sun, J.Q. Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv. Mater., 2012, 24(33), 4578-4582.
[58]
Liao, C.; Zhang, M.; Yao, M.Y.; Hua, T.; Li, L.; Yan, F. Flexible organic electronics in biology: Materials and devices. Adv. Mater., 2015, 27, 7493-7527.
[59]
Jiang, Y.; Guo, Y.; Liu, Y. Engineering of amorphous polymeric insulators for organic field-effect transistors. Adv. Electron. Mater., 2017, 3, 1700157.
[60]
Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater., 2002, 14(2), 158-160.
[61]
Trung, T.Q.; Lee, N.E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater., 2016, 28, 4338-4372.
[62]
Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater., 2013, 25, 6158-6182.
[63]
Li, W.; Guo, F.; Ling, H.; Zhang, P.; Yi, M.; Wang, L.; Wu, D.; Xie, L.; Huang, W. High-performance nonvolatile organic field-effect transistor memory based on organic semiconductor heterostructures of pentacene/P13/pentacence as both charge transport and trapping layers. Adv. Sci., 2017, 4, 1700007.
[64]
Wu, X.; Mao, S.; Chen, J.; Huang, J. Strategies for improving the performance of sensors based on organic field-effect transistors. Adv. Mater., 2018, 30, 1705642.
[65]
Schwartz, G.; Tee, B.C.K.; Mei, J.; Appleton, A.L.; Kim, D.H.; Wang, H.; Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun., 2013, 4, 1859.
[66]
Mannsfeld, S.C.B.; Tee, B.C.K.; Stoltenberg, R.M.; Chen, C.V.H.H.; Barman, S.; Muir, B.V.O.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater., 2010, 9, 859.
[67]
Zang, Y.; Zhang, F.; Huang, D.; Gao, X.; Di, C.A.; Zhu, D. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun., 2015, 6, 6269.
[68]
Zhao, J.; Guo, H.; Pang, Y.K.; Xi, F.; Yang, Z.W.; Liu, G.; Guo, T.; Dong, G.; Zhang, C.; Wang, Z.L. Flexible organic tribotronic transistor for pressure and magnetic sensing. ACS Nano, 2017, 11, 11566-11573.
[69]
Liu, Z.; Yin, Z.; Wang, J.; Zheng, Q. Polyelectrolyte dielectrics for flexible low-voltage organic thin-film transistors in highly sensitive pressure sensing. Adv. Funct. Mater., 2019, 29, 1806092.
[70]
Kim, J.; Ng, T.N.; Kim, W.S. Highly sensitive tactile sensors integrated with organic transistors. Appl. Phys. Lett., 2012, 101, 103308.
[71]
Kim, D.I.; Trung, T.Q.; Hwang, B.U.; Kim, J.S.; Jeon, S.; Bae, J.; Park, J.J.; Lee, N.E. A sensor array using multi-functional field-effect transistors with ultrahigh sensitivity and precision for bio-monitoring. Sci. Rep., 2015, 5, 12705.
[72]
Torikai, K.; De Oliveria, R.F.; de Camargo, D.H.S.; Bufon, C.C.B. Low voltage, flexible, and self-encapsulated ultracompact organic thin-film transistors based on nanomembrances. Nano Lett., 2018, 18, 5552-5561.
[73]
Assadi, A.; Svensson, C.; Willander, M.; Inganäs, O. Field-effect mobility of poly(3-hexylthiophene). Appl. Phys. Lett., 1988, 53, 195.
[74]
Fukuda, K.; Takeda, Y.; Yoshimura, Y.; Shiwaku, R.; Tran, L.T.; Sekine, T.; Mizukami, M.; Kumaki, D.; Tokito, S. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun., 2014, 5, 5147.
[75]
Fukuda, K.; Takeda, Y.; Mizukami, M.; Kumaki, D.; Tokito, S. Fully solution-processed flexible organic thin film transistor arrays with high mobility and exceptional uniformity. Sci. Rep., 2014, 4, 3947.
[76]
Ren, H.; Cui, N.; Tang, Q.X.; Tong, Y.H.; Zhao, X.L.; Liu, Y.C. High-performance, ultraflexible organic thin-film transistor array via solution process. Small, 2018, 14, 1801020.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 4
ISSUE: 1
Year: 2019
Page: [3 - 14]
Pages: 12
DOI: 10.2174/2405465804666190313154903

Article Metrics

PDF: 29
HTML: 12