Large-Scale Self-Assembly in Weakly-Flocculated Suspensions

Author(s): Aleš Dakskobler, Matjaz Valant*.

Journal Name: Current Smart Materials

Volume 4 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Studies on the formation of colloidal crystals in concentrated suspensions have mainly been based on dispersed suspensions with a repulsive inter-particle potential of hard or nearly hard spheres. The self-assembly in weakly-flocculated suspensions has still been unrealized. Here, we report on the formation of ordered structures in concentrated suspensions of nearly-hard spherical particles with weakly-attractive inter-particle interactions that are an order of magnitude higher than the particles’ thermal energy.

Methods: In our case, the self-assembly in such suspensions is not thermodynamically driven, but an external shear force must be applied. The driving force for the particles’ ordering is an increase in the inter-particle interactions. This manifests itself in a decrease in the average angle between the interparticle interaction direction and the applied shear stress direction.

Results: For a successful ordering into a large-scale closed packed assembly, the external shear force must not exceed the inter-particle attractive interaction for the minimum possible average angle (as in the closed packed structures) but be high enough to enable the particles to move in the highly loaded suspension.

Conclusion: The developed method for the self-assembly of the weakly flocculated systems can be applied very generally e.g. a control over a composition of heterogeneous colloidal crystals, manufacturing of the large-scale photonic crystals or preparation of very densely packed compacts of particles needed for the production of sintered ceramics.

Keywords: Colloidal crystals, photonic crystals, self-assembly, SiO2 spherical particles, weakly-flocculated suspensions, interparticle potential.

[1]
Li, B.; Zhou, D.; Han, Y. Assembly and phase transitions of colloidal crystals. Nat. Rev. Mater., 2016, 1, 15011.
[2]
Jiang, S.; Van Dyk, A.; Maurice, A.; Bohling, J.; Fasano, D.; Brownell, S. Design colloidal particle morphology and self-assembly for coating applications. Chem. Soc. Rev., 2017, 46, 3792-3807.
[3]
Armstrong, E.; O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures-fundamentals and applications from optics to energy storage. J. Mater. Chem. C, 2015, 3, 6109-6143.
[4]
Pusey, P.N.; Van Megen, W.; Bartlett, P.; Ackerson, B.J.; Rarity, J.G.; Underwood, S.M. Structure of crystals of hard colloidal spheres. Phys. Rev. Lett., 1989, 63, 2753-2756.
[5]
Koumakis, N.; Brady, J.F.; Petekidis, G. Amorphous and ordered states of concentrated hard spheres under oscillatory shear. J. Non-Newt. Fluid Mech., 2016, 233, 119-132.
[6]
Pusey, P.N.; Van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature, 1986, 320, 340-342.
[7]
Pham, K.N.; Puertas, A.M.; Bergenholtz, J.; Egelhaaf, S.U.; Moussaïd, A.; Pusey, P.N.; Schoefiled, A.B.; Cates, M.E.; Fuchs, M.; Poon, W.C.K. Multiple glassy states in a simple model system. Science, 2002, 296, 104-106.
[8]
Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israechvili, J. The role of inter particle and external forces in nanoparticle assembly. Nat. Mater., 2008, 7, 527-538.
[9]
Exner, H.E.; Müller, C. Particle rearangement and pore space coarsening during solid-state sintering. J. Am. Ceram. Soc., 2009, 92, 1384-1390.
[10]
Tadmor, R.; Rosensweig, T.R.; Frey, E.; Klein, J. Resolving the puzzle of ferrofluid dispersants. Langmuir, 2000, 16, 9117-9120.
[11]
Mackor, E.L. A theoretical approach of the colloidal-chemical stability of dispersions in hydrocarbons. J. Colloid Interface Sci., 1951, 6, 492.
[12]
Kramer, T.M.; Lang, F.F. Colloidal processing of silicon nitride: Rheology of alkylated powders. J. Am. Ceram. Soc., 1994, 77, 922-928.
[13]
Benitez, J.J.; Kopta, S.; Diez-Perez, I.; Sanz, F.; Ogletree, D.F.; Salmeron, M. Molecular packing changes of octadecylamine monolayers on mica induced by pressure and humidity. Langmuir, 2003, 19, 762-765.
[14]
Velamakanni, B.V.; Chang, J.C.; Lange, F.F.; Pearson, D.S. New method for efficient colloidal particle packing via modulation of repulsive lubricating hydration force. Langmuir, 1990, 6, 1323-1325.
[15]
Hamaker, H.C. The London-van der Waals attraction between spherical particles. Physica, 1973, 4, 1058-1072.
[16]
Bergström, L.; Meurk, A.; Arwin, H.; Rowcliffe, D.J. Estimation of Hamaker constants of ceramic materials from optical data using Lifshitz theory. J. Am. Ceram. Soc., 1996, 79, 330-348.
[17]
Dakskobler, A.; Kosmač, T. Rheological properties of re-melted paraffin-wax suspensions used for LPIM. J. Eur. Ceram. Soc., 2009, 29, 1831-1836.
[18]
Zhou, Z.; Solomon, M.J.; Scales, P.; Boger, D.V. The yield stress of concentrated flocculated suspensions of size distributed particles. J. Rheol., 1999, 43, 651-671.
[19]
Buscall, R.; McGowan, I.J.; Mills, P.D.A.; Stewart, R.F.; Sutton, D.; White, L.R.; Yates, G.E. The rheology of strongly flocculated suspensions. J. Non-Newt. Fluid Mech., 1987, 24, 183-202.
[20]
German, R.M. Powder Injection Molding; Metal Powder Industries Federation: Princeton, NJ, 1990, pp. 147-172.
[21]
Flatt, R.J.; Bowen, P. A yield stress model for suspensions. J. Am. Ceram. Soc., 2006, 89, 1244-1256.
[22]
Flatt, R.J.; Bowen, P. Yield stress of multimodal powder suspensions: An extension of the YODEL (Yield Stress mODEL). J. Am. Ceram. Soc., 2007, 90, 1038-1044.
[23]
Dakskobler, A.; Kocjan, A.; Bowen, P. Predicting the yield stress of paraffin-wax suspensions. Powder Technol., 2016, 291, 1-6.
[24]
Dullien, F.A.L. Porous Media. Fluid Transport and Pore Structure, 2nd ed; Academic Press Inc., 1992.
[25]
Franks, G.V.; Lange, F.F. Plastic-to-brittle transition of saturated, alumina powder compacts. J. Am. Ceram. Soc., 1996, 79, 3161-3168.
[26]
Panine, P.; Narayanan, T.; Vermant, J.; Mewis, J. Structure and rehology during shear-induced crystallization of a latex suspension. Phys. Rev. E, 2002, 66, 022401.
[27]
Wu, Y.L.; Derks, D.; Van Blaaderen, A.; Imhof, A. Melting and crystallization of colloidal hard-sphere suspensions under shear. Proc. Natl. Acad. Sci., 2009, 106, 10564-10569.
[28]
Seager, C.R.; Mason, T.G. Slippery diffusion-limited aggregation. Phys. Rev. E, 2007, 75, 011406.
[29]
Millet, P.C.; Wang, Y.U. Diffuse interface field approach to modeling and simulation of self-assembly of charged colloidal particles of various shapes and sizes. Acta Mater., 2009, 57, 3101-3109.
[30]
Kramb, R.C.; Ward, L.T.; Jensen, K.E.; Vaia, R.A.; Miracle, D.B. Structural property comparison of Ca-Mg-Zn glasses to a colloidal proxy system. Acta Mater., 2013, 61, 6911-6917.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 4
ISSUE: 1
Year: 2019
Page: [68 - 74]
Pages: 7
DOI: 10.2174/2405465804666190313153806

Article Metrics

PDF: 16
HTML: 4