Concise Review on the Applications of Magnetically Separable Brønsted Acidic Catalysts

Author(s): Jagatheeswaran Kothandapani, Subramaniapillai S. Ganesan*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Magnetically separable Brønsted acidic catalysts combine the advantages of high efficiency of homogeneous Brønsted acidic catalyst with the ease of magnetic separation from the reaction medium. In addition to their ease of separation, the magnetically separable Brønsted acidic catalysts also possess high stability towards air and moisture, facile functionalization and tunable hydrophobic properties. This review portrays the applications of sulfonic acid anchored γ -Fe2O3 or Fe3O4 nanoparticles, magnetic core encapsulated acid functionalized silica or mesoporous nanoparticles, functionalized ionic liquid coated acidic magnetically separable nanoparticles and miscellaneous magnetically separable Brønsted acidic nanoparticles in diverse organic transformations. In addition, the merits of magnetically separable Brønsted acid nanocatalyst are also summarized and compared with the traditional homogeneous/heterogeneous Brønsted acidic catalysts.

Keywords: Magnetic nanoparticles, brønsted acid, green synthesis, nanocatalysis, iron oxide, multicomponent reaction.

[1]
(a) Sheldon, R.A.; Arends, I.; Hanefeld, U. Green chemistry and catalysis; John Wiley & Sons, 2007.
(b) Anastas, P.T. Hand book of Green chemistry: Green catalysis; Vol. 1-3, Wiley,, 2013.
(c) Rueping, M.; Parmar, D.; Sugiono, E. Asymmetric Bronsted acid catalysis; John Wiley & Sons, 2016.
[2]
(a) Rueping, M.; Koenigs, R.M.; Atodiresei, I. Unifying metal and brønsted acid catalysis—concepts, mechanisms and classifications. Chem. Eur. J., 2010, 16, 9350-9365.
(b) Akiyama, T.; Mori, K. Stronger brønsted acids: Recent progress. Chem. Rev., 2015, 115, 9277-9306.
[3]
King, M.; Davenport, W.G.; Moats, M. Sulfuric Acid Manufacture: Analysis, Control and Optimization; Newnes 2nd ed, 2013.
[4]
Nakajima, K.; Hara, M. Amorphous carbon with so3h groups as a solid brønsted acid catalyst. ACS Catal., 2012, 2, 1296-1304.
[5]
Najjar, Y.S.H. Hydrogen safety: The road toward green technology. Int. J. Hydrogen Energy, 2013, 38, 10716-10728.
[6]
Ebara, R.; Tanaka, F.; Kawasaki, M. Sulfuric acid dew point corrosion in waste heat boiler tube for copper smelting furnace. Eng. Fail. Anal., 2013, 33, 29-36.
[7]
(a) Pálinkó, I. Chapter 3.12- Heterogeneous catalysis: A fundamental pillar of sustainable synthesis. In: Green Chem. An inclusive approach; , 2018; p. 415- 447.
(b) Yidiz, Y.; Erken, E.; Pamuk, H.; Sert, H.; Sen, F. Monodisperse pt nanoparticles assembled on reduced graphene oxide: Highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol., 2016, 16, 5951-5958.
(c) Karatepe, O.; Yıldız, Y.; Pamuk, H.; Eris, S.; Dasdelen, Z.; Sen, F. Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy–PANI nanocomposites as a novel catalyst for the electrooxidation of methanol. RSC Advances, 2016, 6, 50851-50857.
(d) Aday, B.; Pamuk, H.; Kaya, M.; Sen, F. Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol., 2016, 16, 6498-6504.
(e) Goksu, H.; Yıldız, Y.; Celik, B.; Yazıcı, M.; Kılbas, B.; Sen, F. Highly efficient and monodisperse graphene oxide furnished ru/pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 5, 953-958.
(f) Erken, E.; Yıldız, Y.; Kilbas, B.; Sen, F. Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol., 2016, 16, 5944-5950.
(g) Yildiz, Y.; Okyay, T.O.; Sen, B.; Gezer, B.; Kuzu, S.; Savk, A.; Demir, E.; Dasdelen, Z.; Sert, H.; Sen, F. Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect, 2017, 2, 697-701.
(h) Sen, B.; Kuzu, S.; Demir, E.; Akocak, S.; Sen, F. Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrogen Energy, 2017, 42, 23276-23283.
(i) Yıldız, Y.; Kuzu, K.; Sen, B.; Savk, A.; Akocak, S.; Sen, F. Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int. J. Hydrogen Energy, 2017, 42, 13061-13069.
(j) Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Sen, F. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects., 2017, 11, 25-31.
(k) Ayranci, R.; Baskaya, G.; Guzel, M.; Bozkurt, S.; Ak, M.; Savk, A.; Sen, F. Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Struct. Nano-Objects., 2017, 11, 13-19.
[8]
Benaglia, M.; Puglisi, A.; Cozzi, F. Polymer-supported organic catalysts. Chem. Rev., 2003, 103, 3401-3430.
[9]
Mizuno, N.; Misono, M. Heterogeneous Catalysis. Chem. Rev., 1998, 98, 199-217.
[10]
Kozhevnikov, I.V. Heteropoly acids and related compounds as catalysts for fine chemical synthesis. Catal. Rev., Sci. Eng., 1995, 37, 311-352.
[11]
Olveira, S.; Forster, S.P.; Seeger, S. Nanocatalysis: Academic discipline and industrial realities; J. Nanotech, 2014, pp. 1-19.
[12]
Thakore, S.I.; Rathore, P.S. Nanoparticle-assisted organic transformations. Hand book of nanoparticles, 2016, 769-801.
[13]
Schlogl, R. Abd, Hamid, S.B. Nanocatalysis: Mature science revisited or something really new? Angew. Chem., 2004, 43, 1628-1637.
[14]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun., 2013, 49, 752-770.
[15]
Shylesh, S.; Schunemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem., 2010, 49, 3428-3459.
[16]
He, J.; Ji, W.; Yao, L.; Wang, Y.; Khezri, B.; Webster, R.D.; Chen, H. Strategy for nano-catalysis in a fixed-bed system. Adv. Mater., 2014, 26, 4151-4155.
[17]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111, 3036-3075.
[18]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12, 743-754.
[19]
(a) Wulandari, I.O.; Santjojo, D.J.D.H.; Shobirin, R.A. Sabarudin. A. Characteristics and magnetic properties of chitosan-coated fe3o4 nanoparticles prepared by ex-situ co-precipitation method Rasayan. J. Chem., 2017, 10, 1348-1358.
(b) Kolvari, E.; Koukabi, N.; Armandpour, O. A simple and efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid. Tetrahedron, 2014, 70, 1383-1386.
[20]
Dam, B.; Pal, A.K.; Gupta, A. Nano-Fe3O4@silica sulfuric acid as a reusable and magnetically separable potent solid acid catalyst in Biginelli-type reaction for the one-pot multicomponent synthesis of fused dihydropyrimidine derivatives: A greener NOSE and SFRC approach. Synth. Commun., 2016, 46, 275-286.
[21]
Zamani, F.; Hosseini, S.M.; Kianpour, S. Synthesis and characterization of sulfonated-mercaptopropanoic acid coated Fe3O4 nanoparticles as a novel acid magnetic catalyst for Biginelli reaction. Solid State Sci., 2013, 26, 139-143.
[22]
Amoozadeh, A.; Kolvari, E.; Koukabi, N.; Otokesh, S. Nanomagnetic-supported sulfonic acid: Simple and rapid method for the synthesis of α,α′-Bis-(substituted-benzylidene) cycloalkanones. J. Chin. Chem. Soc., 2015, 62, 501-505.
[23]
Debnath, K.; Singha, K.; Pramanik, A. Magnetically separable Fe3O4–SO3H nanoparticles as an efficient solid acid support for the facile synthesis of two types of spiroindole fused dihydropyridine derivatives under solvent free conditions. RSC Advances, 2015, 5, 31866-31877.
[24]
Gawande, M.B.; Rathi, A.K.; Nogueira, I.D.; Varma, R.S.; Branco, P.S. Magnetite-supported sulfonic acid: A retrievable nanocatalyst for the Ritter reaction and multicomponent reactions. Green Chem., 2013, 15, 1895-1899.
[25]
(a) Pathak, S.; Debnath, K.; Mollick, M.M.R.; Pramanik, A. Facile cyclization in the synthesis of highly fused diaza cyclooctanoid compounds using retrievable nano magnetite-supported sulfonic acid catalyst. RSC Advances, 2014, 4, 23779-23789.
(b) Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Chai, E.H. Biomedical importance of indoles. Molecules, 2013, 18, 6620-6662.
(c) Sharma, V.; Kumar, P.; Pathak, D.J. Biological importance of the indole nucleus in recent years: A comprehensive review. Heterocyclic Chem, 2010, 47, 491-502.
(d) Hamid, H.A.; Ramli, A.N.M.; Yusoff, M.M. Indole alkaloids from plants as potential leads for antidepressant drugs: A mini review. Front. Pharmacol., 2017, 8, 96-103.
[26]
Mahmoudi, H.; Jafari, A.A.; Saeedi, S.; Firouzabadi, H. Sulfonic acid-functionalized magnetic nanoparticles as a recyclable and eco-friendly catalyst for atom economical michael addition reaction and bis indolyl methane synthesis. RSC Advances, 2015, 5, 3023-3030.
[27]
Kothandapani, J.; Ganesan, A.; Ganesan, S.S. Magnetically separable sulfonic acid catalysed one-pot synthesis of diverse indole derivatives. Tetrahedron Lett., 2015, 56, 5568-5572.
[28]
Thombal, R.S.; Jadhav, V.H. Application of glucose derived magnetic solid acid for etherification of 5-HMF to 5-EMF, dehydration of sorbitol to isosorbide, and esterification of fatty acids. Tetrahedron Lett., 2016, 57, 4398-4400.
[29]
Kothandapani, J.; Ganesan, A.; Ganesan, S.S. Nano-magnetic sulfonic acid catalyzed facile synthesis of diverse amide derivatives. Synthesis, 2017, 49, 685-692.
[30]
Miraki, M.K.; Arefi, M.; Yazdani, E.; Abbasi, S.; Karimi, M.; Azizi, K.; Heydari, A. Guanidine acetic acid functionalized magnetic nanoparticles: recoverable green catalyst for transamidation. ChemistrySelect, 2016, 1, 6328-6333.
[31]
Lai, D.M.; Deng, L.; Li, J.; Liao, B.; Guo, Q.X.; Fu, Y. Hydrolysis of cellulose into glucose by magnetic solid acid. ChemSusChem, 2011, 4, 55-58.
[32]
Abu-Reziq, R.; Wang, D.; Post, M.; Alper, H. Separable catalysts in one-pot syntheses for greener chemistry. Chem. Mater., 2008, 20, 2544-2550.
[33]
Gill, C.S.; Price, B.A.; Jones, C.W. Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. J. Catal., 2007, 251, 145-152.
[34]
Mukherjee, S.; Kundu, A.; Pramanik, A. A new and efficient synthesis of pyrazole-fused isocoumarins on the solid surface of magnetically separable Fe3O4@SiO2-SO3H nanoparticles. Tetrahedron Lett., 2016, 57, 2103-2108.
[35]
Kundu, A.; Mukherjee, S.; Pramanik, A. Synthesis of a new class of pyrazole embedded spirocyclic scaffolds using magnetically separable Fe3O4@SiO2–SO3H nanoparticles as recyclable solid acid support. RSC Advances, 2015, 5, 107847-107856.
[36]
Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B. Fe3O4@silica sulfonic acid nanocomposite as a magnetically separable catalyst for the synthesis of 2-arylpyrrolo [2,3,4-kl] acridin-1(2H)-ones. J. Chem. Res., 2015, 39, 380-386.
[37]
Yadegarian, S.; Davoodnia, A.; Nakhaei, A. Solvent-free synthesis of 1,2,4,5-tetrasubstituted imidazoles using nano Fe3O4@SiO2-OSO3H as a stable and magnetically recyclable heterogeneous catalyst. Orient. J. Chem., 2015, 31, 573-579.
[38]
Nemati, F.; Saeedirad, R. Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido [4,5-b] quinolines and indeno fused pyrido [2,3-d] pyrimidines in water. Chin. Chem. Lett., 2013, 24, 370-372.
[39]
Nemati, F.; Sabaqian, S. Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as an efficient, eco-friendly and magnetically recoverable catalyst for synthesis of various xanthene derivatives under solvent-free conditions. J. Saudi Chem. Soc., 2017, 21, S383-S393.
[40]
Nemati, F.; Afkham, M.G.; Elhampour, A. Nano-Fe3O4-encapsulated silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green synthesis of 1,1-diacetates. Green Chem. Lett. Rev., 2014, 7, 79-84.
[41]
Naeimi, H.; Nazifi, Z.S. A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives. J. Nanopart. Res., 2013, 15, 2026-2037.
[42]
Naeimi, H.; Nazifi, Z.S.; Amininezhad, S.M. Preparation of Fe3O4 encapsulated-silica sulfonic acid nanoparticles and study of their in vitro antimicrobial activity. J. Photochem. Photobiol. B, 2015, 149, 180-188.
[43]
Ghasemzadeh, M.A.; Azimi-Nasrabad, M. Nano-Fe3O4-encapsulated silica particles bearing sulfonic acid groups as a magnetically separable catalyst for the green and efficient synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-dione derivatives. Res. Chem. Intermed., 2016, 42, 1057-1069.
[44]
Mahdudi, S.; Saberi, D.; Heydari, A. Green synthesis of nitroenamines by γ‑Fe2O3@SiO2–OSO3H nanoparticles as a highly efficient and magnetically separable catalyst. J. Iran. Chem. Soc., 2015, 12, 903-907.
[45]
Cheraghi, S.; Saberi, D.; Heydari, A. Nanomagnetically modified sulfuric acid (γ-Fe2O3@SiO2-OSO3H): An efficient, fast, and reusable catalyst for greener Paal–Knorr pyrrole synthesis. Catal. Lett., 2014, 144, 1339-1343.
[46]
Zhang, X.; Wang, M.; Wang, Y.; Zhang, C.; Zhang, Z.; Wan, F.; Xu, J. Nanocoating of magnetic cores with sulfonic acid functionalized shells for the catalytic dehydration of fructose to 5‐hydroxymethylfurfural. Chin. J. Catal., 2014, 35, 703-708.
[47]
Bai, Y.Y.; Su, S.; Wang, S.; Wang, B.; Sun, R-C.; Song, G.; Xiao, L.P. Catalytic conversion of carbohydrates into 5-ethoxymethylfurfural by a magnetic solid acid using γ-valerolactone as co-solvent. Energy Technol., 2018, 6, 1951-1958.
[48]
Mobaraki, A.; Movassagh, B.; Karimi, B. Magnetic solid sulfonic acid decorated with hydrophobic regulators: A combinatorial and magnetically separable catalyst for the synthesis of α‑aminonitriles. ACS Comb. Sci., 2014, 16, 352-358.
[49]
Movassagh, B.; Tahershamsi, L.; Mobaraki, A. A magnetic solid sulfonic acid modified with hydrophobic regulators: An efficient recyclable heterogeneous catalyst for one-pot aza-Michael-type and Mannich-type reactions of aldehydes, ketones, and amines. Tetrahedron Lett., 2015, 56, 1851-1854.
[50]
Liu, Y.H.; Deng, J.; Gao, J-W.; Zhang, Z-H. Triflic acid-functionalized silica-coated magnetic nanoparticles as a magnetically separable catalyst for synthesis of gem-dihydroperoxides. Adv. Synth. Catal., 2012, 354, 441-447.
[51]
Khorshidi, A.; Shariati, S. Sulfuric acid functionalized MCM-41 coated on magnetite nanoparticles as a recyclable core–shell solid acid catalyst for three-component condensation of indoles, aldehydes and thiols. RSC Advances, 2014, 4, 41469-41475.
[52]
Kefayati, H.; Golshekan, M.; Shariati, S.; Bagheri, M. Fe3O4@MCM‐48–SO3H: An efficient magnetically separable nanocatalyst for the synthesis of benzo[f]chromeno [2,3‐d] pyrimidinones. Chin. J. Catal., 2015, 36, 572-578.
[53]
Sayin, S.; Yilmaz, M. Brønsted acidic magnetic nano-Fe3O4-adorned calix[n]arene sulfonic acids: Synthesis and application in the nucleophilic substitution of alcohols. Tetrahedron, 2014, 70, 6669-6676.
[54]
Rajkumari, K.; Kalita, J.; Das, D.; Rokhum, L. Magnetic Fe3O4@silica sulfuric acid nanoparticles promoted regioselective protection/deprotection of alcohols with dihydropyran under solvent-free conditions. RSC Advances, 2017, 7, 56559-56565.
[55]
Mamaghani, M.; Moslemi, L.; Badrian, A. One-pot synthesis of novel derivatives of dithioxopyrido [2,3-d:6,5-d’] dipyrimidine-4,6-diones using hap-encapsulated γ-Fe2O3 supported sulfonic acid nanocatalyst. Modern Org. Chem. Res., 2018, 3, 1-10.
[56]
Mohsenimehr, M.; Mamaghani, M.; Shirini, F.; Sheykhan, M.; Moghaddam, F.A. One-pot synthesis of novel pyrido [2,3-d] pyrimidines using HAp-encapsulated-γ-Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions. Chin. Chem. Lett., 2014, 25, 1387-1391.
[57]
Sheykhan, M.; Mohammadquli, M.; Heydari, A. A new and green synthesis of formamidines by γ-Fe2O3@SiO2–HBF4 nanoparticles as a robust and magnetically recoverable catalyst. J. Mol. Struct., 2012, 1027, 156-161.
[58]
Nezhad, E.R.; Karimian, S.; Sajjadifar, S. Imidazole functionalized magnetic Fe3O4 nanoparticles a highly efficient and reusable brønsted acid catalyst for the regioselective thiocyanation of aromatic and heteroaromatic compounds at room temperature in water: Ethanol. J. Sci. Islamic Repub. Iran., 2015, 26, 233-240.
[59]
Elhamifar, D.; Ramazani, Z.; Norouzi, M.; Mirbagheri, R. Magnetic iron oxide/phenylsulfonic acid: A novel, efficient and recoverable nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans under ultrasonic conditions. J. Colloid Interface Sci., 2018, 511, 392-401.
[60]
D’Souza, R.; Vats, T.; Chattree, A.; Siril, P.F. Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renew. Energy, 2018, 126, 1064-1073.
[61]
Shafiee, M.; Reza, M.; Majid, G.; Abbas, F. Preparation of 1,4-dihydropyridine derivatives using perchloric acid adsorbed on magnetic Fe3O4 nanoparticles coated with silica. Curr. Nanosci., 2013, 9, 197-201.
[62]
Moghanian, H.; Fard, M.A.B.; Mobinikhaledi, A.; Ahadi, N. Bis(p-sulfoanilino) triazine-functionalized silica-coated magnetite nanoparticles as an efficient and magnetically reusable nano-catalyst for Biginelli-type reaction. Res. Chem. Intermed., 2018, 44, 4083-4101.
[63]
Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X.; Lee, A.F.; Wilson, K.; Rehan, M. A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl. Catal. B, 2018, 234, 268-278.
[64]
Tai, Z.; Isaacs, M.A.; Parlett, C.M.A.; Lee, A.F.; Wilson, K. High activity magnetic core-mesoporous shell sulfonic acid silica nanoparticles for carboxylic acid esterification. Catal. Commun., 2017, 92, 56-60.
[65]
Kara, A.; Erdem, B. Synthesis, characterization and catalytic properties of sulfonic acid functionalized magnetic-poly(divinylbenzene-4-vinylpyridine) for esterification of propionic acid with methanol. J. Mol. Catal. Chem., 2011, 349, 42-47.
[66]
Li, J.; Zhao, H.; Hou, X.; Fa, W.; Cai, J. Fe3O4@SiO2-SO3H nanocomposites: An efficient magnetically separable solid acid catalyst for esterification reaction. Micro & Nano Lett., 2017, 12, 53-57.
[67]
Deng, J.; Mo, L-P.; Zhao, F-Y.; Hou, L-L.; Yang, L.; Zhang, Z-H. Sulfonic acid supported on hydroxyapatite-encapsulated-ᵞ-Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds. Green Chem., 2011, 13, 2576-2584.
[68]
Tiwari, M.S.; Gawade, A.B.; Yadav, G.D. Magnetically separable sulfated zirconia as highly active acidic catalyst for selective synthesis of ethyl levulinate from furfuryl alcohol. Green Chem., 2017, 19, 963-976.
[69]
Hosseini, M.M.; Kolvari, E. Nano magnetic zirconia sulfuric acid (Fe3O4@ZrO2-SO3H): Magnetically separable and reusable heterogeneous catalyst for multicomponent reactions. Chem. Lett., 2017, 46, 53-55.
[70]
Mobaraki, A.; Movassagh, B.; Karimi, B. A novel water-tolerant organosulfonic acid-functionalized silica-coated magnetic nanoparticles as a hydrophobic, recyclable and magnetically separable catalyst for the solventfree Biginelli reaction. The 17th International Electronic Conference on Synthetic Organic Chemistry, 2013.
[71]
Nakhaei, A. Synthesis of thiazole derivatives using magnetic nano zirconia–sulfuric acid as an efficient and recyclable catalyst in water. Russ. J. Gen. Chem., 2017, 87, 1850-1856.
[72]
Amoozadeh, A.; Golian, S.; Rahmani, S. TiO2-coated magnetite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions. RSC Advances, 2015, 5, 45974-45982.
[73]
Khalafi-Nezhad, A.; Nourisefat, M.; Panahi, F. L-Cysteine functionalized magnetic nanoparticles (LCMNP): A novel magnetically separable organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitriles in water. Org. Biomol. Chem., 2015, 13, 7772-7779.
[74]
Doustkhah, E.; Rostamnia, S. Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a powerful hybrid catalyst for synthesis of indazolophthalazinetriones. J. Colloid Interface Sci., 2016, 478, 280-287.
[75]
Swami, S.; Agarwala, A.; Shrivastava, R. Sulfonic acid functionalized silica-coated CuFe2O4 core-shell nanoparticles: An efficient and magnetically separable heterogeneous catalyst for syntheses of 2-pyrazole-3-amino-imidazo-fused polyheterocycles. New J. Chem., 2016, 40, 9788-9794.
[76]
Nemati, F.; Elhampour, A.; Natanzi, M.B.; Sabaqian, S. Nano-CuFe2O4-supported sulfonic acid as a novel and recyclable nanomagnetic acid for diazotization of aromatic amines: efficient synthesis of various azo dyes. J. Iran. Chem. Soc., 2016, 13, 1045-1054.
[77]
Wang, Y.; Hu, Z.; Fan, G.; Yan, J.; Song, G.; Li, J. Catalytic conversion of Glucose to 5-(hydroxymethyl) furfural over phosphotungstic acid supported on SiO2-coated Fe3O4. Waste Biomass Valoriz., 2018.
[78]
Yang, Z.; Qi, W.; Su, R.; He, Z. Selective synthesis of 2,5-diformylfuran and 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose catalyzed by magnetically separable catalysts. Energy Fuels, 2016, 31, 533-541.
[79]
Zheng, F.C.; Chen, Q.W.; Hu, L.; Yan, N.; Kong, X.K. Synthesis of sulfonic acid-functionalized Fe3O4@C nanoparticles as magnetically recyclable solid acid catalysts for acetalization reaction. Dalton Trans., 2014, 43, 1220-1227.
[80]
Wang, Y-T.; Fang, Z.; Yang, X-X. Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid. Appl. Energy, 2017, 204, 702-714.
[81]
Shiri, L.; Narimani, H.; Kazemi, M. Synthesis and characterization of sulfamic acid supported on Fe3O4 nanoparticles: A green, versatile and magnetically separable acidic catalyst for oxidation reactions and Knoevenagel condensation. Appl. Organomet. Chem., 2018, 32, e3927. DOI: 10.1002/aoc.3927.
[82]
Veisi, H.; Mohammadi, P.; Gholami, J. Sulfamic acid heterogenized on functionalized magnetic Fe3O4 nanoparticles with diaminoglyoxime as a green, efficient and reusable catalyst for one-pot synthesis of substituted pyrroles in aqueous phase. Appl. Organomet. Chem., 2014, 28, 868-873.
[83]
Panahi, F.; Niknam, E.; Sarikhani, S.; Haghighi, F.; Khalafi-Nezhad, A. Multicomponent synthesis of new curcumin-based pyrano [2,3-d] pyrimidine derivatives using a nano-magnetic solid acid catalyst. New J. Chem., 2017, 41, 12293-12302.
[84]
Kanaani, E.; Nasr-Esfahani, M. A green eco approach toward the synthesis of novel 4-iminoquinoline derivatives using Brønsted acid nanocatalysts. Monat. Chemie – Chem. Month, 2018, 149, 543-550.
[85]
Mostafavi, H.; Islami, M.R.; Tikdari, A.M. Encapsulation of palladium chloride using 2‐formylbenzoic acid supported by Fe3O4 nanoparticles modified with SiO2 and propylamine, its characterization and its application for Suzuki coupling reaction. Appl. Organomet. Chem., 2018, 32, e4384. DOI: 10.1002/aoc.4384.
[86]
Luque, R.; Baruwati, B.; Varma, R.S. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation. Green Chem., 2010, 12, 1540-1543.
[87]
Afradi, M.; Foroughifar, N.; Pasdar, H.; Moghanian, H. L-Proline N-sulfonic acid-functionalized magnetic nanoparticles: A novel and magnetically reusable catalyst for one-pot synthesis of 3, 4-dihydropyrimidine-2-(1H)-thiones under solvent-free conditions. RSC Advances, 2016, 6, 59343-59351.
[88]
Azizi, K.; Azarnia, J.; Karimi, M.; Yazdani, E.; Heydari, A. Novel magnetically separable sulfated boric acid functionalized nanoparticles for Hantzsch Ester synthesis. Synlett, 2016, 27, 1810-1813.
[89]
Moghanian, H.; Mobinikhaledi, A.; Blackman, A.G.; Sarough-Farahani, E. Sulfanilic acid-functionalized silica-coated magnetite nanoparticles as an efficient, reusable and magnetically separable catalyst for the solvent-free synthesis of 1-amido- and 1-aminoalkyl-2-naphthols. RSC Advances, 2014, 4, 28176-28185.
[90]
Khalafi-Nezhad, A.; Panahi, F.; Yousefi, R.; Sarrafi, S.; Gholamalipour, Y. Magnetic nanoparticles-supported tungstosilicic acid: As an efficient magnetically separable solid acid for the synthesis of benzoazoles in water. J. Iran. Chem. Soc., 2014, 11, 1311-1319.
[91]
Nikbakht, F.; Heydari, A.; Saberi, D.; Azizi, K. Oxidation of secondary amines to nitrones using magnetically separable tungstophosphoric acid supported on silica-encapsulated γ -Fe2O3 nanoparticles. Tetrahedron Lett., 2013, 54, 6520-6523.
[92]
Khalafi-Nezhad, A.; Divara, M.; Panahi, F. Magnetic nanoparticles-supported tungstic acid (MNP-TA): As an efficient magnetic recyclable catalyst for one-pot synthesis of spirooxindoles in water. RSC Advances, 2015, 5, 2223-2230.
[93]
Zhang, M.; Liu, P.; Liu, Y-H.; Shang, Z-R.; Hu, H-C.; Zhang, Z-H. Magnetically separable graphene oxide anchored sulfonic acid: a novel, high efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo [3,4-b] pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Advances, 2016, 6, 106160-106170.
[94]
Chen, T.; Peng, L.; Yu, X.; He, L. Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel, 2018, 219, 344-352.
[95]
Chinthakindi, S.; Purohit, A.; Singh, V.; Tak, V.; Dubey, D.K.; Pardasani, D. Magnetic graphene–polystyrene sulfonic acid nano composite: A dispersive cation exchange sorbent for the enrichment of aminoalcohols and ethanolamines from environmental aqueous samples J. Chrom. A., 2015, 1423, 54-62.
[96]
Rafiee, E.; Rahpeyma, N. Selective oxidation of sulfurs and oxidation desulfurization of model oil by 12-tungstophosphoric acid on cobalt-ferrite nanoparticles as magnetically recoverable catalyst. Chin. J. Catal., 2015, 36, 1342-1349.
[97]
Zolfigol, M.A.; Ayazi-Nasrabadi, R. Synthesis of the first magnetic nano particles with thiourea dioxide-based sulfonic acid tag: Application at the one-pot synthesis of 1,1,3-tri(1H-indol-3-yl) alkanes under mild and green conditions. RSC Advances, 2016, 6, 69595-69604.
[98]
Zhang, Q.; Su, H.; Luo, J.; Wei, Y. A magnetic nanoparticle supported dual acidic ionic liquid: a “quasi-homogeneous” catalyst for the one-pot synthesis of benzoxanthenes. Green Chem., 2012, 14, 201-208.
[99]
Wan, H.; Wu, Z.; Chen, W.; Guan, G.; Cai, Y.; Chen, C.; Li, Z.; Liu, X. Heterogenization of ionic liquid based on mesoporous material as magnetically recyclable catalyst for biodiesel production. J. Mol. Catal. A., 2015, 398, 127-132.
[100]
Vafaeezadeh, M.; Alinezhad, H. Brønsted acidic ionic liquids: Green catalysts for essential organic reactions. J. Mol. Liq., 2016, 218, 95-105.
[101]
Zhang, Q.; Gao, Y-H.; Qin, S-L.; Wei, H-X. Facile one-pot synthesis of amidoalkyl naphthols and benzopyrans using magnetic nanoparticle-supported acidic ionic liquid as a highly efficient and reusable catalyst. Catalysts, 2017, 7, 351.
[102]
Khalafi-Nezhad, A.; Mohammadi, S. Magnetic, acidic, ionic liquid-catalyzed one-pot synthesis of spirooxindoles. ACS Comb. Sci., 2013, 15, 512-518.
[103]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Azad, M. Dual acidic ionic liquid immobilized on α-Fe2O3–MCM-41 magnetic mesoporous materials as the hybrid Acidic nanocatalyst for the synthesis of pyrimido [4,5-d] pyrimidine derivatives. Catal. Lett., 2014, 144, 1772-1783.
[104]
Nejad, M.S.; Sheibani, H. Multi-layer functionalized poly(2-vinylpyridinium) ionic liquid immobilized on magnetic nanoparticles: highly recoverable and magnetically separable brønsted acid catalyst. Catal. Lett., 2018, 148, 125-133.
[105]
Kefayati, H.; Bazargard, S.J.; Vejdansefat, P.; Shariati, S.; Kohankar, A.M. Fe3O4@MCM-41-SO3H@[HMIm][HSO4]: An effective magnetically separable nanocatalyst for the synthesis of novel spiro [benzoxanthene-indoline] diones. Dyes Pigm., 2016, 125, 309-315.
[106]
Khazaei, A.; Sarmasti, N.; Yousefi Seyf, J. Anchoring high density sulfonic acid based ionic liquid on the magnetic nano-magnetite (Fe3O4), application to the synthesis of hexahydroquinoline derivatives. J. Mol. Liq., 2018, 262, 484-494.
[107]
Pourjavadi, A.; Hosseini, S.H.; Doulabi, M.; Fakoorpoor, S.M.; Seidi, F. Multi-layer functionalized poly (ionic liquid) coated magnetic nanoparticles: Highly recoverable and magnetically separable Brønsted acid catalyst. ACS Catal., 2012, 2, 1259-1266.
[108]
Shakourian-Fard, M.; Rezayan, A.H.; Kheirjou, S.; Bayat, A.; Hashemi, M.M. Synthesis of α-aminophosphonates in the presence of a magnetic recyclable Fe3O4@SiO2-2mimSO3H nanocatalyst. Bull. Chem. Soc. Jpn., 2014, 87, 982-987.
[109]
Dadgar, M.; Kalkhorani, N.M. [γ-Fe2O3-HAp-(CH2)3-NHSO3H] nanoparticles as a highly efficient and magnetically separable catalyst for green one-pot synthesis of 4(3H)-Quinazolinones. Int. J. Nanodimens., 2015, 6, 473-478.
[110]
Wang, H.; Covarrubias, J.; Prock, H.; Wu, X.; Wang, D.; Bossmann, S.H. Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J. Phys. Chem. C, 2015, 119, 26020-26028.
[111]
Tabrizian, E.; Amoozadeh, A. A new type of SO3H-functionalized magnetic-titania as a robust magnetically-recoverable solid acid nanocatalyst for multi-component reactions. RSC Advances, 2016, 6, 96606-96615.
[112]
Maleki, A.; Jafari, A.A.; Yousefi, S. MgFe2O4/cellulose/SO3H nanocomposite: a new biopolymer-based nanocatalyst for one-pot multicomponent syntheses of polysubstituted tetrahydropyridines and dihydropyrimidinones. J. Iran. Chem. Soc, 2017, 14, 1801-1813.
[113]
Ghasemi, M.H.; Kowsari, E.; Shafiee, A. Aza-Michael-type addition reaction catalysed by a supported ionic liquid phase incorporating an anionic heteropoly acid. Tetrahedron Lett., 2016, 57, 1150-1153.
[114]
Zolfagharinia, S.; Kolvari, E.; Koukabi, N.; Hosseini, M.M. Core-shell zirconia-coated magnetic nanoparticles offering a strong option to prepare a novel and magnetized heteropolyacid based heterogeneous nanocatalyst for three- and four- component reactions. Arab. J. Chem., 2017.
[115]
Wu, Z.; Chen, C.; Wang, L.; Wan, H.; Guan, G. Magnetic material grafted poly (phosphotungstate-based acidic ionic liquid) as efficient and recyclable catalyst for esterification of oleic acid. Ind. Eng. Chem. Res., 2016, 55, 1833-1842.
[116]
Rafiee, E.; Eavani, S. Controlled immobilization of Keggin-type heteropoly acids on the surface of silica encapsulated γ-Fe2O3 nanoparticles and investigation of catalytic activity in the oxidative esterification of arylaldehydes with methanol. J. Mol. Catal. A: Chem., 2013, 373, 30-37.
[117]
Hashemzadeh, A.; Amini, M.M.; Tayebee, R.; Sadeghian, A.; Durndell, L.J.; Isaacs, M.A.; Osatiashtiani, A.; Parlett, C.M.A.; Lee, A.F. A magnetically-separable H3PW12O40@Fe3O4/EN-MIL-101 catalyst for the one-pot solventless synthesis of 2H-indazolo [2,1-b] phthalazine-triones. Mol. Catal., 2017, 440, 96-106.
[118]
Wu, Z.; Chen, C.; Wan, H.; Wang, L.; Li, Z.; Li, B.; Guo, Q.; Guan, G. Fabrication of magnetic NH2-MIL-88B (Fe) confined Brønsted ionic liquid as an efficient catalyst in biodiesel synthesis. Energy Fuels, 2016, 30, 10739-10746.
[119]
Li, J.; Liang, X. Magnetic solid acid catalyst for biodiesel synthesis from waste oil. Energy Convers. Manage., 2017, 141, 126-132.
[120]
Akiyama, T.; Itoh, J.; Fuchibe, K. Recent progress in chiral Brønsted acid catalysis. Adv. Synth. Catal., 2006, 348, 999-1010.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 3
Year: 2019
Page: [313 - 334]
Pages: 22
DOI: 10.2174/1385272823666190312152209
Price: $58

Article Metrics

PDF: 17
HTML: 2
EPUB: 1
PRC: 1