High Resolution Nuclear Magnetic Resonance Spectroscopy on Biological Tissue and Metabolomics

Author(s): Yanqin Lin*, Qing Zeng, Liangjie Lin, Zhong Chen.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 12 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

High-resolution nuclear magnetic resonance (NMR) spectroscopy is a universal analytical tool. It can provide detailed information on chemical shifts, J coupling constants, multiplet patterns, and relative peak areas. It plays an important role in the fields of chemistry, biology, medicine, and pharmacy. A highly homogeneous magnetic field is a prerequisite for excellent spectral resolution. However, in some cases, such as in vivo and ex vivo biological tissues, the magnetic field inhomogeneity due to magnetic susceptibility variation in samples is unavoidable and hard to eliminate by conventional methods. The techniques based on intermolecular multiple quantum coherences and conventional single quantum coherence can remove the influence of the field inhomogeneity effects and be applied to obtain highresolution NMR spectra of biological tissues, including in vivo animal and human tissues. Broadband 1H homo-decoupled NMR spectroscopy displays J coupled resonances as collapsed singlets, resulting in highly resolved spectra. It can be used to acquire high-resolution spectra of some pharmaceuticals. The J-difference edited spectra can be used to detect J coupled metabolites, such as γ-aminobutyric acid, the detection of which is interfered by intense neighboring peaks. High-resolution 1H NMR spectroscopy has been widely utilized for the identification and characterization of biological fluids, constituting an important tool in drug discovery, drug development, and disease diagnosis.

Keywords: Nuclear magnetic resonance (NMR), high resolution, intermolecular multiple coherences (iMQC), single quantum coherence, homo-decoupled (pure shift), structure elucidation, J-difference editing, metabolomics.

[1]
Anderson, M.W.; Gebbie-Rayet, J.T.; Hill, A.R.; Farida, N.; Attfield, M.P.; Cubillas, P.; Blatov, V.A.; Proserpio, D.M.; Akporiaye, D.; Arstad, B.; Gale, J.D. Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature, 2017, 544(7651), 456-459.
[http://dx.doi.org/10.1038/nature21684] [PMID: 28371799]
[2]
Sliwa, J.; Freiwald, W.A. A dedicated network for social interaction processing in the primate brain. Science, 2017, 356(6339), 745-749.
[http://dx.doi.org/10.1126/science.aam6383] [PMID: 28522533]
[3]
Wolfender, J.L.; Rudaz, S.; Choi, Y.H.; Kim, H.K. Plant metabolomics: from holistic data to relevant biomarkers. Curr. Med. Chem., 2013, 20(8), 1056-1090.
[PMID: 23210790]
[4]
Arsovska, E.; Mali, G.; Golič Grdadolnik, S.; Zega, A. NMR in the design of antibacterials. Curr. Med. Chem., 2014, 21(38), 4328-4346.
[http://dx.doi.org/10.2174/0929867321666141011193707] [PMID: 25387909]
[5]
Warren, W.S.; Richter, W.; Andreotti, A.H.; Farmer, B.T., II Generation of impossible cross-peaks between bulk water and biomolecules in solution NMR. Science, 1993, 262(5142), 2005-2009.
[http://dx.doi.org/10.1126/science.8266096] [PMID: 8266096]
[6]
Wei, Z.; Yang, J.; Chen, Y.; Lin, Y.; Chen, Z. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields. J. Chem. Phys., 2015, 142(13), 134202.
[http://dx.doi.org/10.1063/1.4916520] [PMID: 25854236]
[7]
Wei, Z.L.; Lin, L.J.; Chen, Y.H.; Lin, Y.Q.; Chen, Z. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields. Appl. Phys. Lett., 2014, 105(13), 4.
[http://dx.doi.org/10.1063/1.4896997]
[8]
Puts, N.A.J.; Edden, R.A.E. In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog. Nucl. Magn. Reson. Spectrosc., 2012, 60, 29-41.
[http://dx.doi.org/10.1016/j.pnmrs.2011.06.001] [PMID: 22293397]
[9]
Vathyam, S.; Lee, S.; Warren, W.S. Homogeneous NMR spectra in inhomogeneous fields. Science, 1996, 272(5258), 92-96.
[http://dx.doi.org/10.1126/science.272.5258.92] [PMID: 8600541]
[10]
Faber, C.; Pracht, E.; Haase, A. Resolution enhancement in in vivo NMR spectroscopy: detection of intermolecular zero-quantum coherences. J. Magn. Reson., 2003, 161(2), 265-274.
[http://dx.doi.org/10.1016/S1090-7807(03)00006-5] [PMID: 12713979]
[11]
Chen, X.; Lin, M.; Chen, Z.; Cai, S.; Zhong, J. High-resolution intermolecular zero-quantum coherence spectroscopy under inhomogeneous fields with effective solvent suppression. Phys. Chem. Chem. Phys., 2007, 9(47), 6231-6240.
[http://dx.doi.org/10.1039/b709154k] [PMID: 18046472]
[12]
Chen, Z.; Cai, S.; Chen, Z.; Zhong, J. Fast acquisition of high-resolution NMR spectra in inhomogeneous fields via intermolecular double-quantum coherences. J. Chem. Phys., 2009, 130(8), 084504.
[http://dx.doi.org/10.1063/1.3076046] [PMID: 19256612]
[13]
Huang, Y.; Lin, Y-Y.; Cai, S.; Yang, Y.; Sun, H.; Lin, Y.; Chen, Z. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment. J. Chem. Phys., 2016, 144(10), 104202.
[http://dx.doi.org/10.1063/1.4943575] [PMID: 26979686]
[14]
Lin, L.; Wei, Z.; Lin, Y.; Chen, Z. A single-scan method for NMR 2D J-resolved spectroscopy. Chem. Commun. (Camb.), 2015, 51(7), 1234-1236.
[http://dx.doi.org/10.1039/C4CC07751B] [PMID: 25472615]
[15]
Huang, Y.; Cai, S.; Chen, X.; Chen, Z. Intermolecular single-quantum coherence sequences for high-resolution NMR spectra in inhomogeneous fields. J. Magn. Reson., 2010, 203(1), 100-107.
[http://dx.doi.org/10.1016/j.jmr.2009.12.007] [PMID: 20053574]
[16]
Huang, Y.; Cai, S.; Lin, Y.; Chen, Z. An intermolecular single-quantum coherence detection scheme for high-resolution two-dimensional J-resolved spectroscopy in inhomogeneous fields. Appl. Spectrosc., 2010, 64(2), 235-240.
[http://dx.doi.org/10.1366/000370210790619645] [PMID: 20149286]
[17]
Frydman, L.; Scherf, T.; Lupulescu, A. The acquisition of multidimensional NMR spectra within a single scan. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 15858-15862.
[http://dx.doi.org/10.1073/pnas.252644399] [PMID: 12461169]
[18]
Huang, Y.; Zhang, Z.; Chen, H.; Feng, J.; Cai, S.; Chen, Z. A high-resolution 2D J-resolved NMR detection technique for metabolite analyses of biological samples. Sci. Rep., 2015, 5, 8390.
[http://dx.doi.org/10.1038/srep08390] [PMID: 25670027]
[19]
Chen, Y.; Cai, S.; Cai, C.; Cui, X.; Chen, Z. High-resolution NMR spectroscopy in inhomogeneous fields via Hadamard-encoded intermolecular double-quantum coherences. NMR Biomed., 2012, 25(9), 1088-1094.
[http://dx.doi.org/10.1002/nbm.2773] [PMID: 22290717]
[20]
Cai, H.H.; Chen, Y.S.; Cui, X.H.; Cai, S.H.; Chen, Z. High-resolution H-1 NMR spectroscopy of fish muscle, eggs and small whole fish via hadamard-encoded intermolecular multiple-quantum coherence. PLoS One, 2014, 9(1)
[http://dx.doi.org/10.1371/journal.pone.0086422]
[21]
Cai, H.; Lin, L.; Ding, S.; Cui, X.; Chen, Z. Fast quantification of fatty acid profile of intact fish by intermolecular double-quantum coherence H-1-NMR spectroscopy. Eur. J. Lipid Sci. Technol., 2016, 118(8), 1150-1159.
[http://dx.doi.org/10.1002/ejlt.201500309]
[22]
Jin, Y.; Cai, H.; Lin, Y.; Cui, X.; Chen, Z. Usage of the ultrafast intermolecular single-quantum coherence (UF iSQC) sequence for NMR spectroscopy of ex vivo tissue. Food Res. Int., 2015, 77, 636-642.
[http://dx.doi.org/10.1016/j.foodres.2015.08.039]
[23]
Huang, Y.; Cai, S.; Zhang, Z.; Chen, Z. High-resolution two-dimensional J-resolved NMR spectroscopy for biological systems. Biophys. J., 2014, 106(9), 2061-2070.
[http://dx.doi.org/10.1016/j.bpj.2014.03.022] [PMID: 24806938]
[24]
Tan, C.; Cai, S.; Huang, Y. Spatially localized two-dimensional J-resolved NMR spectroscopy via intermolecular double-quantum coherences for biological samples at 7 T. PLoS One, 2015, 10(7), e0134109.
[http://dx.doi.org/10.1371/journal.pone.0134109] [PMID: 26207739]
[25]
Bao, J.; Cui, X.; Huang, Y.; Zhong, J.; Chen, Z. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences. Phys. Med. Biol., 2015, 60(16), 6391-6406.
[http://dx.doi.org/10.1088/0031-9155/60/16/6391] [PMID: 26237566]
[26]
Wei, Z.; Lin, L.; Wang, C.; Yang, J.; Liu, G.; Zhong, J.; Lin, Y.; Chen, Z. High-resolution localized spatiotemporal encoding correlated spectra under inhomogeneous magnetic fields via asymmetrical gradient encoding/decoding. NMR Biomed., 2015, 28(2), 210-216.
[http://dx.doi.org/10.1002/nbm.3241] [PMID: 25504877]
[27]
Balla, D.Z.; Melkus, G.; Faber, C. Spatially localized intermolecular zero-quantum coherence spectroscopy for in vivo applications. Magn. Reson. Med., 2006, 56(4), 745-753.
[http://dx.doi.org/10.1002/mrm.21007] [PMID: 16897767]
[28]
Cui, X.; Bao, J.; Huang, Y.; Cai, S.; Chen, Z. In vivo spatially localized high resolution 1H MRS via intermolecular single-quantum coherence of rat brain at 7 T. J. Magn. Reson. Imaging, 2013, 37(2), 359-364.
[http://dx.doi.org/10.1002/jmri.23839] [PMID: 23034817]
[29]
Balla, D.Z.; Faber, C. Localized intermolecular zero-quantum coherence spectroscopy in vivo. Concepts in Magnetic Resonance Part A, 2008, 32A(2), 117-133.
[http://dx.doi.org/10.1002/cmr.a.20104]
[30]
Branca, R.T.; Warren, W.S. In vivo NMR detection of diet-induced changes in adipose tissue composition. J. Lipid Res., 2011, 52(4), 833-839.
[http://dx.doi.org/10.1194/jlr.D012468] [PMID: 21270099]
[31]
Branca, R.T.; Warren, W.S. In vivo brown adipose tissue detection and characterization using water-lipid intermolecular zero-quantum coherences. Magn. Reson. Med., 2011, 65(2), 313-319.
[http://dx.doi.org/10.1002/mrm.22622] [PMID: 20939093]
[32]
Branca, R.T.; Zhang, L.; Warren, W.S.; Auerbach, E.; Khanna, A.; Degan, S.; Ugurbil, K.; Maronpot, R. In vivo noninvasive detection of Brown Adipose Tissue through intermolecular zero-quantum MRI. PLoS One, 2013, 8(9), e74206.
[http://dx.doi.org/10.1371/journal.pone.0074206] [PMID: 24040203]
[33]
Lin, Y.; Gu, T.; Chen, Z.; Kennedy, S.; Jacob, M.; Zhong, J. High-resolution MRS in the presence of field inhomogeneity via intermolecular double-quantum coherences on a 3-T whole-body scanner. Magn. Reson. Med., 2010, 63(2), 303-311.
[http://dx.doi.org/10.1002/mrm.22224] [PMID: 20099324]
[34]
Zangger, K.; Sterk, H. Homonuclear broadband-decoupled NMR spectra. J. Magn. Reson., 1997, 124(2), 486-489.
[http://dx.doi.org/10.1006/jmre.1996.1063]
[35]
Aguilar, J.A.; Nilsson, M.; Morris, G.A. Simple proton spectra from complex spin systems: pure shift NMR spectroscopy using BIRD. Angew. Chem. Int. Ed. Engl., 2011, 50(41), 9716-9717.
[http://dx.doi.org/10.1002/anie.201103789] [PMID: 21882316]
[36]
Paudel, L.; Adams, R.W.; Király, P.; Aguilar, J.A.; Foroozandeh, M.; Cliff, M.J.; Nilsson, M.; Sándor, P.; Waltho, J.P.; Morris, G.A. Simultaneously enhancing spectral resolution and sensitivity in heteronuclear correlation NMR spectroscopy. Angew. Chem. Int. Ed. Engl., 2013, 52(44), 11616-11619.
[http://dx.doi.org/10.1002/anie.201305709] [PMID: 24014213]
[37]
Foroozandeh, M.; Adams, R.W.; Meharry, N.J.; Jeannerat, D.; Nilsson, M.; Morris, G.A. Ultrahigh-resolution NMR spectroscopy. Angew. Chem. Int. Ed. Engl., 2014, 53(27), 6990-6992.
[http://dx.doi.org/10.1002/anie.201404111] [PMID: 24861024]
[38]
Foroozandeh, M.; Adams, R.W.; Nilsson, M.; Morris, G.A. Ultrahigh-resolution total correlation NMR spectroscopy. J. Am. Chem. Soc., 2014, 136(34), 11867-11869.
[http://dx.doi.org/10.1021/ja507201t] [PMID: 25111063]
[39]
Meyer, N.H.; Zangger, K. Simplifying proton NMR spectra by instant homonuclear broadband decoupling. Angew. Chem. Int. Ed. Engl., 2013, 52(28), 7143-7146.
[http://dx.doi.org/10.1002/anie.201300129] [PMID: 23733677]
[40]
Castañar, L.; Nolis, P.; Virgili, A.; Parella, T. Full sensitivity and enhanced resolution in homodecoupled band-selective NMR experiments. Chemistry, 2013, 19(51), 17283-17286.
[http://dx.doi.org/10.1002/chem.201303235] [PMID: 24218341]
[41]
Donovan, K.J.; Frydman, L. HyperBIRD: a sensitivity-enhanced approach to collecting homonuclear-decoupled proton NMR spectra. Angew. Chem. Int. Ed. Engl., 2015, 54(2), 594-598.
[http://dx.doi.org/10.1002/ange.201407869] [PMID: 25256418]
[42]
van Veenendaal, T.M.; IJff, D.M.; Aldenkamp, A.P.; Hofman, P.A.M.; Vlooswijk, M.C.G.; Rouhl, R.P.W.; de Louw, A.J.; Backes, W.H.; Jansen, J.F.A. Metabolic and functional MR biomarkers of antiepileptic drug effectiveness: A review. Neurosci. Biobehav. Rev., 2015, 59, 92-99.
[http://dx.doi.org/10.1016/j.neubiorev.2015.10.004] [PMID: 26475992]
[43]
Petroff, O.A.C.; Rothman, D.L.; Behar, K.L.; Mattson, R.H. Initial observations on effect of vigabatrin on in vivo 1H spectroscopic measurements of γ-aminobutyric acid, glutamate, and glutamine in human brain. Epilepsia, 1995, 36(5), 457-464.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb00486.x] [PMID: 7614922]
[44]
Chowdhury, F.A.; O’Gorman, R.L.; Nashef, L.; Elwes, R.D.; Edden, R.A.; Murdoch, J.B.; Barker, G.J.; Richardson, M.P. Investigation of glutamine and GABA levels in patients with idiopathic generalized epilepsy using MEGAPRESS. J. Magn. Reson. Imaging, 2015, 41(3), 694-699.
[http://dx.doi.org/10.1002/jmri.24611] [PMID: 24585443]
[45]
Rothman, D.L.; Petroff, O.A.; Behar, K.L.; Mattson, R.H. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc. Natl. Acad. Sci. USA, 1993, 90(12), 5662-5666.
[http://dx.doi.org/10.1073/pnas.90.12.5662] [PMID: 8516315]
[46]
Petroff, O.A.C.; Behar, K.L.; Mattson, R.H.; Rothman, D.L. Human brain gamma-aminobutyric acid levels and seizure control following initiation of vigabatrin therapy. J. Neurochem., 1996, 67(6), 2399-2404.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67062399.x] [PMID: 8931472]
[47]
Mueller, S.G.; Weber, O.M.; Boesiger, P.; Wieser, H.G. Influence of pyridoxal 5′-phosphate alone and in combination with vigabatrin on brain GABA measured by 1H-NMR-spectroscopy. Brain Res. Bull., 2001, 55(4), 555-560.
[http://dx.doi.org/10.1016/S0361-9230(01)00565-2] [PMID: 11543957]
[48]
Novotny, E.J., Jr; Hyder, F.; Shevell, M.; Rothman, D.L. GABA changes with vigabatrin in the developing human brain. Epilepsia, 1999, 40(4), 462-466.
[http://dx.doi.org/10.1111/j.1528-1157.1999.tb00741.x] [PMID: 10219272]
[49]
Petroff, O.A.C.; Hyder, F.; Collins, T.; Mattson, R.H.; Rothman, D.L. Acute effects of vigabatrin on brain GABA and homocarnosine in patients with complex partial seizures. Epilepsia, 1999, 40(7), 958-964.
[http://dx.doi.org/10.1111/j.1528-1157.1999.tb00803.x] [PMID: 10403220]
[50]
Verhoeff, N.P.; Petroff, O.A.C.; Hyder, F.; Zoghbi, S.S.; Fujita, M.; Rajeevan, N.; Rothman, D.L.; Seibyl, J.P.; Mattson, R.H.; Innis, R.B. Effects of vigabatrin on the GABAergic system as determined by [123I]iomazenil SPECT and GABA MRS. Epilepsia, 1999, 40(10), 1433-1438.
[http://dx.doi.org/10.1111/j.1528-1157.1999.tb02016.x] [PMID: 10528940]
[51]
Weber, O.M.; Verhagen, A.; Duc, C.O.; Meier, D.; Leenders, K.L.; Boesiger, P. Effects of vigabatrin intake on brain GABA activity as monitored by spectrally edited magnetic resonance spectroscopy and positron emission tomography. Magn. Reson. Imaging, 1999, 17(3), 417-425.
[http://dx.doi.org/10.1016/S0730-725X(98)00184-2] [PMID: 10195585]
[52]
Petroff, O.A.C.; Rothman, D.L.; Behar, K.L.; Lamoureux, D.; Mattson, R.H. The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy. Ann. Neurol., 1996, 39(1), 95-99.
[http://dx.doi.org/10.1002/ana.410390114] [PMID: 8572673]
[53]
Cai, K.; Nanga, R.P.R.; Lamprou, L.; Schinstine, C.; Elliott, M.; Hariharan, H.; Reddy, R.; Epperson, C.N. The impact of gabapentin administration on brain GABA and glutamate concentrations: a 7T 1H-MRS study. Neuropsychopharmacology, 2012, 37(13), 2764-2771.
[http://dx.doi.org/10.1038/npp.2012.142] [PMID: 22871916]
[54]
Kuzniecky, R.; Ho, S.; Pan, J.; Martin, R.; Gilliam, F.; Faught, E.; Hetherington, H. Modulation of cerebral GABA by topiramate, lamotrigine, and gabapentin in healthy adults. Neurology, 2002, 58(3), 368-372.
[http://dx.doi.org/10.1212/WNL.58.3.368] [PMID: 11839834]
[55]
Petroff, O.A.C.; Hyder, F.; Rothman, D.L.; Mattson, R.H. Effects of gabapentin on brain GABA, homocarnosine, and pyrrolidinone in epilepsy patients. Epilepsia, 2000, 41(6), 675-680.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb00227.x] [PMID: 10840398]
[56]
Petroff, O.A.C.; Hyder, F.; Rothman, D.L.; Mattson, R.H. Topiramate rapidly raises brain GABA in epilepsy patients. Epilepsia, 2001, 42(4), 543-548.
[http://dx.doi.org/10.1046/j.1528-1157.2001.18800.x] [PMID: 11440351]
[57]
Kuzniecky, R.; Hetherington, H.; Ho, S.; Pan, J.; Martin, R.; Gilliam, F.; Hugg, J.; Faught, E. Topiramate increases cerebral GABA in healthy humans. Neurology, 1998, 51(2), 627-629.
[http://dx.doi.org/10.1212/WNL.51.2.627] [PMID: 9710056]
[58]
Sanacora, G.; Mason, G.F.; Rothman, D.L.; Krystal, J.H. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am. J. Psychiatry, 2002, 159(4), 663-665.
[http://dx.doi.org/10.1176/appi.ajp.159.4.663] [PMID: 11925309]
[59]
Bhagwagar, Z.; Wylezinska, M.; Taylor, M.; Jezzard, P.; Matthews, P.M.; Cowen, P.J. Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am. J. Psychiatry, 2004, 161(2), 368-370.
[http://dx.doi.org/10.1176/appi.ajp.161.2.368] [PMID: 14754790]
[60]
Streeter, C.C.; Hennen, J.; Ke, Y.; Jensen, J.E.; Sarid-Segal, O.; Nassar, L.E.; Knapp, C.; Meyer, A.A.; Kwak, T.; Renshaw, P.F.; Ciraulo, D.A. Prefrontal GABA levels in cocaine-dependent subjects increase with pramipexole and venlafaxine treatment. Psychopharmacology (Berl.), 2005, 182(4), 516-526.
[http://dx.doi.org/10.1007/s00213-005-0121-5] [PMID: 16075286]
[61]
Sanacora, G.; Mason, G.F.; Rothman, D.L.; Behar, K.L.; Hyder, F.; Petroff, O.A.; Berman, R.M.; Charney, D.S.; Krystal, J.H. Reduced cortical γ-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry, 1999, 56(11), 1043-1047.
[http://dx.doi.org/10.1001/archpsyc.56.11.1043] [PMID: 10565505]
[62]
Hasler, G.; van der Veen, J.W.; Tumonis, T.; Meyers, N.; Shen, J.; Drevets, W.C. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry, 2007, 64(2), 193-200.
[http://dx.doi.org/10.1001/archpsyc.64.2.193] [PMID: 17283286]
[63]
Sanacora, G.; Gueorguieva, R.; Epperson, C.N.; Wu, Y.T.; Appel, M.; Rothman, D.L.; Krystal, J.H.; Mason, G.F. Subtype-specific alterations of γ-aminobutyric acid and glutamate in patients with major depression. Arch. Gen. Psychiatry, 2004, 61(7), 705-713.
[http://dx.doi.org/10.1001/archpsyc.61.7.705] [PMID: 15237082]
[64]
Abdallah, C.G.; Jackowski, A.; Sato, J.R.; Mao, X.; Kang, G.; Cheema, R.; Coplan, J.D.; Mathew, S.J.; Shungu, D.C. Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. Eur. Neuropsychopharmacol., 2015, 25(8), 1082-1090.
[http://dx.doi.org/10.1016/j.euroneuro.2015.04.025] [PMID: 25983019]
[65]
Brambilla, P.; Perez, J.; Barale, F.; Schettini, G.; Soares, J.C. GABAergic dysfunction in mood disorders. Mol. Psychiatry, 2003. 8(8), 721-737, 715.
[66]
Behar, K.L.; Rothman, D.L.; Petersen, K.F.; Hooten, M.; Delaney, R.; Petroff, O.A.C.; Shulman, G.I.; Navarro, V.; Petrakis, I.L.; Charney, D.S.; Krystal, J.H. Preliminary evidence of low cortical GABA levels in localized 1H-MR spectra of alcohol-dependent and hepatic encephalopathy patients. Am. J. Psychiatry, 1999, 156(6), 952-954.
[http://dx.doi.org/10.1176/ajp.156.6.952] [PMID: 10360140]
[67]
Caverzasi, E.; Pichiecchio, A.; Poloni, G.U.; Calligaro, A.; Pasin, M.; Palesi, F.; Castellazzi, G.; Pasquini, M.; Biondi, M.; Barale, F.; Bastianello, S. Magnetic resonance spectroscopy in the evaluation of treatment efficacy in unipolar major depressive disorder: a review of the literature. Funct. Neurol., 2012, 27(1), 13-22.
[PMID: 22687162]
[68]
Yoon, J.H.; Maddock, R.J.; Rokem, A.; Silver, M.A.; Minzenberg, M.J.; Ragland, J.D.; Carter, C.S. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J. Neurosci., 2010, 30(10), 3777-3781.
[http://dx.doi.org/10.1523/JNEUROSCI.6158-09.2010] [PMID: 20220012]
[69]
Goddard, A.W.; Mason, G.F.; Almai, A.; Rothman, D.L.; Behar, K.L.; Petroff, O.A.; Charney, D.S.; Krystal, J.H. Reductions in occipital cortex GABA levels in panic disorder detected with 1h-magnetic resonance spectroscopy. Arch. Gen. Psychiatry, 2001, 58(6), 556-561.
[http://dx.doi.org/10.1001/archpsyc.58.6.556] [PMID: 11386984]
[70]
Oz, G.; Terpstra, M.; Tkác, I.; Aia, P.; Lowary, J.; Tuite, P.J.; Gruetter, R. Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations. Magn. Reson. Med., 2006, 55(2), 296-301.
[http://dx.doi.org/10.1002/mrm.20761] [PMID: 16408282]
[71]
Kumar, B.; Prakash, A.; Ruhela, R.K.; Medhi, B. Potential of metabolomics in preclinical and clinical drug development. Pharmacol. Rep., 2014, 66(6), 956-963.
[http://dx.doi.org/10.1016/j.pharep.2014.06.010] [PMID: 25443721]
[72]
Monteiro, M.S.; Carvalho, M.; Bastos, M.L.; Guedes de Pinho, P. Metabolomics analysis for biomarker discovery: advances and challenges. Curr. Med. Chem., 2013, 20(2), 257-271.
[http://dx.doi.org/10.2174/092986713804806621] [PMID: 23210853]
[73]
Kaddurah-Daouk, R.; Kristal, B.S.; Weinshilboum, R.M. Metabolomics: a global biochemical approach to drug response and disease. Annu. Rev. Pharmacol. Toxicol., 2008, 48(1), 653-683.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094715] [PMID: 18184107]
[74]
Brindle, J.T.; Nicholson, J.K.; Schofield, P.M.; Grainger, D.J.; Holmes, E. Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst (Lond.), 2003, 128(1), 32-36.
[http://dx.doi.org/10.1039/b209155k] [PMID: 12572799]
[75]
Brindle, J.T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.K.; Bethell, H.W.L.; Clarke, S.; Schofield, P.M.; McKilligin, E.; Mosedale, D.E.; Grainger, D.J. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med., 2002, 8(12), 1439-1444.
[http://dx.doi.org/10.1038/nm1202-802] [PMID: 12447357]
[76]
Odunsi, K.; Wollman, R.M.; Ambrosone, C.B.; Hutson, A.; McCann, S.E.; Tammela, J.; Geisler, J.P.; Miller, G.; Sellers, T.; Cliby, W.; Qian, F.; Keitz, B.; Intengan, M.; Lele, S.; Alderfer, J.L. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int. J. Cancer, 2005, 113(5), 782-788.
[http://dx.doi.org/10.1002/ijc.20651] [PMID: 15499633]
[77]
Morvan, D.; Demidem, A. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways. Cancer Res., 2007, 67(5), 2150-2159.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2346] [PMID: 17332345]
[78]
Evelhoch, J.; Garwood, M.; Vigneron, D.; Knopp, M.; Sullivan, D.; Menkens, A.; Clarke, L.; Liu, G. Expanding the use of magnetic resonance in the assessment of tumor response to therapy: workshop report. Cancer Res., 2005, 65(16), 7041-7044.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0674] [PMID: 16103049]
[79]
Glunde, K.; Serkova, N.J. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics, 2006, 7(7), 1109-1123.
[http://dx.doi.org/10.2217/14622416.7.7.1109] [PMID: 17054420]
[80]
Emwas, A-H.M.; Salek, R.M.; Griffin, J.L.; Merzaban, J. NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics, 2013, 9(5), 1048-1072.
[http://dx.doi.org/10.1007/s11306-013-0524-y]
[81]
Nicholson, J.K.; O’Flynn, M.P.; Sadler, P.J.; Macleod, A.F.; Juul, S.M.; Sönksen, P.H. Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem. J., 1984, 217(2), 365-375.
[http://dx.doi.org/10.1042/bj2170365] [PMID: 6696735]
[82]
Connor, S.C.; Hansen, M.K.; Corner, A.; Smith, R.F.; Ryan, T.E. Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Mol. Biosyst., 2010, 6(5), 909-921.
[http://dx.doi.org/10.1039/b914182k] [PMID: 20567778]
[83]
Salek, R.M.; Maguire, M.L.; Bentley, E.; Rubtsov, D.V.; Hough, T.; Cheeseman, M.; Nunez, D.; Sweatman, B.C.; Haselden, J.N.; Cox, R.D.; Connor, S.C.; Griffin, J.L. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genomics, 2007, 29(2), 99-108.
[http://dx.doi.org/10.1152/physiolgenomics.00194.2006] [PMID: 17190852]
[84]
Griffin, J.L.; Atherton, H.J.; Steinbeck, C.; Salek, R.M. A Metadata description of the data in “A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human.”. BMC Res. Notes, 2011, 4, 272-272.
[http://dx.doi.org/10.1186/1756-0500-4-272] [PMID: 21801423]
[85]
Culeddu, N.; Chessa, M.; Porcu, M.C.; Fresu, P.; Tonolo, G.; Virgilio, G.; Migaleddu, V. NMR-based metabolomic study of type 1 diabetes. Metabolomics, 2012, 8(6), 1162-1169.
[http://dx.doi.org/10.1007/s11306-012-0420-x]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 12
Year: 2019
Page: [2190 - 2207]
Pages: 18
DOI: 10.2174/0929867326666190312130155
Price: $58

Article Metrics

PDF: 27
HTML: 4