Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-related Memory Decline

Author(s): Adejoke Yetunde Onaolapo, Adebimpe Yemisi Obelawo, Olakunle James Onaolapo*.

Journal Name: Current Aging Science

Volume 12 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Age-related cognitive decline has been suggested to result from an increase in the brain neuron loss, which is attributable to continued derangement of the brain’s oxidant/ antioxidant balance. Increased oxidative stress and a concomitant decrease in the brain’s antioxidant defense system have been associated with functional senescence and organismal ageing. However, nature has configured certain foods to be rich sources of nootropic agents, with research showing that increased consumption of such foods or food ingredients may be protective against ageing-related memory decline. This knowledge is becoming increasingly valuable in an era when the boundary that separates food from medicine is becoming blurred. In this review, we examine extant literature dealing with the impact of ageing on brain structure and function, with an emphasis on the roles of oxidative stress. Secondly, we review the benefits of food-based antioxidants with nootropic effects and/or food-based nootropic agents in mitigating memory decline; with a view to improving our understanding of likely mechanisms. We also highlight some of the limitations to the use of food-based nootropics and suggest ways in which they can be better employed in the clinical management of age-related cognitive decline.

Conclusion: While it is known that the human brain endures diverse insults in the process of ageing, food-based nootropics are likely to go a long way in mitigating the impacts of these insults. Further research is needed before we reach a point where food-based nootropics are routinely prescribed.

Keywords: Ageing, antioxidants, dementia, nutrition, nutraceuticals, nootropic.

[1]
European Commission Eurostat Active Ageing and Solidarity Between Generations. A Statistical Portrait of the European Union 2012; 1-147.
[2]
Kelley AS, McGarry K, Gorges R, Skinner JS. The burden of health care costs for patients with dementia in the last 5 years of life. Ann Intern Med 2015; 163: 729-36.
[3]
Joseph J, Cole G, Head E, Ingram D. Nutrition, brain aging, and neurodegeneration. J Neurosci 2009; 29: 12795-801.
[http://dx.doi.org/10.1523/JNEUROSCI.3520-09.2009]
[4]
Cornelius E. Increased incidence of lymphomas in thymectomized mice-evidence for an immunological theory of aging. Experientia 1972; 28: 459.
[5]
Davidovic M, Sevo G, Svorcan P, Milosevic DP, Despotovic N, Erceg P. Old age as a privilege of the “selfish ones”. Aging Dis 2010; 1: 139-46.
[6]
Jin K. Modern biological theories of aging. Aging Dis 2010; 1: 72-4.
[7]
van Heemst D. Insulin, IGF-1 and longevity. Aging Dis 2010; 1: 147-57.
[8]
Sergiev PV, Dontsova OA, Berezkin GV. Theories of aging: An ever-evolving field. J Nature 2015; 7: 9-18.
[9]
Brayne C. The elephant in the room: Healthy brains in later life, epidemiology and public health. Nat Rev Neurosci 2007; 8: 233-9.
[10]
Deary IJ, Corley J, Gow AJ, Harris SE, Houlihan LM, Marioni RE, et al. Age-associated cognitive decline. Br Med Bull 2009; 92: 135-52.
[http://dx.doi.org/10.1093/bmb/ldp033]
[11]
Pennisi G, Bella R, Lanza G. Motor cortex plasticity in subcortical ischemic vascular dementia: What can TMS say? Clin Neurophysiol 2015; 126: 851-2.
[http://dx.doi.org/10.1016/j.clinph.2014.09.001]
[12]
Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann Neurol 2013; 74: 580-91.
[13]
Kuczmarski MF, Allegro D, Stave E. The association of healthful diets and cognitive function: A review. J Nutr Gerontol Geriatr 2014; 33: 69-90.
[14]
Allès B, Samieri C, Féart C, Jutand MA, Laurin D, Barberger-Gateau P. Dietary patterns: A novel approach to examine the link between nutrition and cognitive function in older individuals. Nutr Res Rev 2015; 25: 207-22.
[15]
van de Rest O, Berendsen AA, Haveman-Nies A, de Groot LC. Dietary patterns, cognitive decline, and dementia: A systematic review. Adv Nutr 2015; 6: 154-68.
[16]
Gouliaev AH, Senning A. Piracetam and other structurally related nootropics. Brain Res Rev 1994; 19: 180-222.
[http://dx.doi.org/10.1016/0165-0173(94)90011-6]
[17]
Noble S, Benfield P. Piracetam: A review of its clinical potential in the management of patients with stroke. CNS Drugs 1998; 9: 497-511.
[http://dx.doi.org/10.2165/00023210-199809060-00006]
[18]
Giovannini MG, Rodinò P, Mutolo D, Pepeu G. Oxiracetam and aniracetam increase acetylcholine release from the rat hippocampus in vivo. Drug Dev Res 1993; 28: 503-9.
[http://dx.doi.org/10.1002/ddr.43028040]
[19]
Rao Y, Xiao P, Xu ST. Effects of intrahippocampal aniracetam treatment on Y-maze avoidance learning performance and behavioral long-term potentiation in dentate gyrus in rat. Neurosci Lett 2001; 298: 183-6.
[http://dx.doi.org/10.1016/S0304-3940(00)01744-4]
[20]
Dahiya S, Rani R, Dhingra D, Kumar S, Dilbaghi N. Potentiation of nootropic activity of EGCG loaded nanosuspension by piperine in swiss male albino mice. J Pharm Sci 2018; 4: 296-302.
[21]
Suliman NA, Mat TCN, Mohd MMA, Adenan MI, Hidayat BMT, Basir R. Establishing natural nootropics: Recent molecular enhancement influenced by natural nootropic. Evid Based Complement Alternat Med 2016; 20164391375
[http://dx.doi.org/10.1155/2016/4391375]
[22]
Salthouse TA. When does age-related cognitive decline begin? Neurobiol Aging 2009; 30:: 507-14.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.09.023.]
[23]
Thompson JJ, Blair MR, Henrey AJ. Over the hill at 24: Persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood. PLoS One 2014; 9e94215 p
[http://dx.doi.org/10.1371/journal.pone.0094215]
[24]
Peters R. Ageing and the brain. Postgrad Med J 2006; 82: 84-8.
[http://dx.doi.org/10.1136/pgmj.2005.036665]
[25]
Schmitz B, Wang X, Barker PB, Pilatus U, Bronzlik P, Dadak M, et al. Effects of aging on the human brain: A Proton and Phosphorus MR spectroscopy study at 3T. J Neuroimaging 2018; 28: 416-21.
[http://dx.doi.org/10.1111/jon.12514]
[26]
Svennerholm L, Boström K, Jungbjer B. Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes. Acta Neuropathol 1997; 94: 345-52.
[27]
Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 2003; 60: 989-94.
[28]
Lanza G, Bramanti P, Cantone M, Pennisi M, Pennisi G, Bella R. Vascular cognitive impairment through the looking glass of transcranial magnetic stimulation. Behav Neurol 2017; 20171421326
[29]
Ishii R, Canuet L, Aoki Y, Hata M, Iwase M, Ikeda S, et al. Healthy and pathological brain aging: From the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology 2017; 75: 151-61.
[http://dx.doi.org/10.1159/000486870]
[30]
Dröge W, Schipper HM. Oxidative stress and aberrant signalling in aging and cognitive decline. Aging Cell 2007; 6: 361-70.
[31]
Haddadi M, Jahromi SR, Sagar BK, Patil RK, Shivanandappa T, Ramesh SR. Brain aging, memory impairment and oxidative stress: A study in Drosophila melanogaster. Behav Brain Res 2014; 259: 60-9.
[http://dx.doi.org/10.1016/j.bbr.2013.10.036]
[32]
Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci 2001; 928: 168-75.
[33]
Fukui K, Omoi NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, et al. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 2002; 959: 275-84.
[34]
Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 2001; 103: 373-83.
[35]
Hajjar I, Hayek SS, Goldstein FC, Martin G, Jones DP, Quyyumi A. Oxidative stress predicts cognitive decline with aging in healthy adults: An observational study. J Neuroinflammation 2018; 15: 17.
[http://dx.doi.org/10.1186/s12974-017-1026-z]
[36]
Alzheimer’s Association; Alzheimer’s Facts and Figures 2014 12/9/14..Available from: . http://www.alz.org/alzheimers_disease_ facts_and_figures.asp
[37]
Alzheimer’s Association. Alzheimer’s Facts and Figures 2018; 14: 367-429.
[38]
World Health Organization. Dementia: A public health priority. Executive Summary 2012.
[39]
World Health Organisation. Towards a dementia plan (2018): . A WHO guide .
[40]
Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, et al. Prevalence of cognitive impairment without dementia in the United States. Ann Intern Med 2008; 148: 427-34.
[41]
Unverzagt FW, Ogunniyi A, Taler V, Gao S, Lane KA, Baiyewu O, et al. Incidence and risk factors for cognitive impairment no dementia and mild cognitive impairment in African Americans. Alzheimer Dis Assoc Disord 2011; 25: 4-10.
[http://dx.doi.org/10.1097/WAD.0b013e3181f1c8b1]
[42]
Parikh PK, Troyer AK, Maione AM, Murphy KJ. The impact of memory change on daily life in normal aging and mild cognitive impairment. Gerontologist 2016; 56:: 877-5.
[http://dx.doi.org/10.1093/geront/gnv030]
[43]
Parkin A. Memory and amnesia. Oxford: Blackwall 1997.
[44]
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. Alzheimer’s Disease Neuroimaging Initiative. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 2014; 117: 20-40.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.004]
[45]
Brem AK, Ran K, Pascual-Leone A. Learning and memory. Handb Clin Neurol 2013; 116: 693-737.
[http://dx.doi.org/10.1016/B978-0-444-53497-2.00055-3]
[46]
Connelly SL, Hasher L, Zacks RT. Age and reading: The impact of distraction. Psychol. Buckner RL Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron 2004; 44: 195-208.
[47]
Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L. Memory aging and brain maintenance. Trends Cogn Sci 2012; 16: 292-305.
[48]
Nilsson LG. Memory function in normal aging. Acta Neurol Scand Suppl 2003; 179: 7-13.
[49]
Fleischman DA, Wilson RS, Gabrieli JD, Bienias JL, Bennett DA. A longitudinal study of implicit and explicit memory in old persons. Psychol Aging 2004; 19: 617-25.
[http://dx.doi.org/10.1037/0882-7974.19.4.617]
[50]
Rabbitt P, Lowe C, Shilling V. Frontal tests and models for cognitive ageing. Eur J Cogn Psychol 2001; 13: 5-28.
[51]
Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev 1996; 103: 403-28.
[52]
Park DC, Reuter-Lorenz P. The adaptive brain: Aging and neurocognitive scaffolding. Annu Rev Psychol 2009; 60: 173-96.
[53]
Dillon C, Serrano CM, Castro D, Leguizamón PP, Heisecke SL, Taragano FE. Behavioral symptoms related to cognitive impairment. Neuropsychiatr Dis Treat 2013; 9: 1443-55.
[http://dx.doi.org/10.2147/NDT.S47133]
[54]
Verhaeghen P. Aging and vocabulary scores: A meta-analysis. Psychol Aging 2003; 18: 332-9.
[http://dx.doi.org/10.1037/0882-7974.18.2.332]
[55]
Kent PS, Luszcz MA. A review of the Boston naming test and multiple-occasion normative data for older adults on 15-item versions. Clin Neuropsychol 2002; 16: 555-74.
[56]
Rogers SL, Friedman RB. The underlying mechanisms of semantic memory loss in Alzheimer’s disease and semantic dementia. Neuropsychologia 2008; 46: 12-21.
[57]
ADI. Alzheimer’s Disease International Policy brief for G8 heads of government: the global impact of dementia 2013-2050. London: Alzheimer’s Disease International 2013.
[58]
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 2013; 9: 63-75.
[59]
Prince M, Ali GC, Guerchet M, Prina AM, Albanese E, Wu YT. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 2016; 8: 23.
[http://dx.doi.org/10.1186/s13195-016-0188-8]
[60]
Langa KM. Is the risk of Alzheimer’s disease and dementia declining? Alzheimers Res Ther 2015; 7: 34.
[61]
Smith PJ, Blumenthal JA. Dietary Factors and Cognitive Decline. J Prev Alzheimers Dis 2016; 3: 53-64.
[62]
Pennisi G, Lanza G, Giuffrida S, Vinciguerra L, Puglisi V, Cantone M, et al. Excitability of the Motor Cortex in De Novo Patients with Celiac Disease. PLoS One 2014; 9e102790
[http://dx.doi.org/10.1371/journal.pone.0102790]
[63]
Gómez-Pinilla F. Brain foods: The effects of nutrients on brain function. Nat Rev Neurosci 2008; 9: 568-78.
[http://dx.doi.org/10.1038/nrn2421]
[64]
Spencer SJ, Korosi A, Layé S, Shukitt-Hale B, Barrientos RM. Food for thought: How nutrition impacts cognition and emotion. NPJ Sci Food 2017; 1: 7.
[65]
Lourida I, Soni M, Thompson-Coon J, Purandare N, Lang IA, Ukoumunne OC, et al. Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology 2013; 24: 479-89.
[66]
Beilharz JE, Maniam J, Morris MJ. Diet-Induced cognitive deficits: The role of fat and sugar, potential mechanisms and nutritional interventions. Nutrients 2015; 7: 6719-38.
[http://dx.doi.org/10.3390/nu7085307]
[67]
Petersson SD, Philippou E. Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Adv Nutr 2016; 7: 889-904.
[68]
Shakersain B, Santoni G, Larsson SC, Faxén-Irving G, Fastbom J, Fratiglioni L, et al. Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimers Dement 2016; 12: 100-9.
[http://dx.doi.org/10.1016/j.jalz.2015.08.002]
[69]
Malouf R, Grimley EJ. The effect of vitamin B6 on cognition. Cochrane Database Syst Rev 2003; 4CD004393
[70]
Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, et al. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr 2004; 80: 114-22.
[71]
Quadri P, Fragiacomo C, Pezzati R, Zanda E, Tettamanti M, Lucca U. Homocysteine and B vitamins in mild cognitive impairment and dementia. Clin Chem Lab Med 2005; 43: 1096-100.
[72]
Malouf R, Grimley EJ. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev 2008.
[http://dx.doi.org/10.1002/14651858.CD004514.pub2]
[73]
Wald DS, Kasturiratne A, Simmonds M. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am J Med 2010; 123: 522-7.
[74]
Muskiet FA, van Goor SA, Kuipers RS, Velzing-Aarts FV, Smit EN, Bouwstra H, et al. Long-chain polyunsaturated fatty acids in maternal and infant nutrition. Prostaglandins Leukot Essent Fatty Acids 2006; 75: 135-44.
[75]
Boudrault C, Bazinet RP, Ma DW. Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer’s disease. J Nutr Biochem 2009; 20: 1-10.
[76]
Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P. Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 2007; 165: 1364-71.
[77]
Giudetti AM, Salzet M, Cassano T. Oxidative Stress in Aging Brain: Nutritional and Pharmacological Interventions for Neurodegenerative Disorders. Oxid Med Cell Longev 2018; 20183416028
[http://dx.doi.org/10.1155/2018/3416028]
[78]
DeKosky ST, Williamson JD, Fitzpatrick AL, Kronmal RA, Ives DG, Saxton JA, et al. Ginkgo Evaluation of Memory (GEM) Study Investigators. JAMA 2008; 300: 2253-62.
[79]
Taylor JE. Neuromediator binding to receptors in the rat brain. The effect of chronic administration of Ginkgo biloba extract. Presse Med 1986; 15(31): 1491-3.
[80]
Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ, Buford JP, et al. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA 2002; 99: 12197-202.
[http://dx.doi.org/10.1073/pnas.182425199]
[81]
Christen Y. Ginkgo biloba and neurodegenerative disorders. Front Biosci 2004; 9: 3091-104.
[82]
Joseph JA, Shukitt-Hale B, Denisova NA, Prior RL, Cao G, Martin A, et al. Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 1998; 18: 8047-55.
[83]
Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, et al. The antioxidants alpha-lipoic acid and N-acetyl cysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 2003; 84: 1173-83.
[84]
Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Vitamin E and cognitive decline in older persons. Arch Neurol 2002; 59: 1125-32.
[85]
Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Martínez-González MÁ, et al. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern Med 2015; 175: 1094-103.
[http://dx.doi.org/10.1001/jamainternmed.2015.1668]
[86]
Corbett A, Ballard C. The value of vitamin E as a treatment for Alzheimer’s disease remains unproven despite functional improvement, due to a lack of established effect on cognition or other outcomes from RCTs. Evid Based Med 2014; 19: 140.
[http://dx.doi.org/10.1136/eb-2014-101741]
[87]
Shukitt-Hale B, Cheng V, Joseph JA. Effects of blackberries on motor and cognitive function in aged rats. Nutr Neurosci 2009; 12(3): 135-40.
[88]
Maher P. How fisetin reduces the impact of age and disease on CNS function. Front Biosci (Schol Ed) 2015; 7: 58-82.
[89]
Rendeiro C, Spencer JP, Vauzour D, Butler LT, Ellis JA, Williams CM. The impact of flavonoids on spatial memory in rodents: From behaviour to underlying hippocampal mechanisms. Genes Nutr 2009; 4(4): 251-70.
[http://dx.doi.org/10.1007/s12263-009-0137-2]
[90]
Currais A, Farrokhi C, Dargusch R, Armando A, Quehenberger O, Schubert D, et al. Fisetin reduces the impact of aging on behavior and physiology in the rapidly agingsamp8 mouse. J Gerontol A Biol Sci Med Sci 2018; 73: 299-307.
[http://dx.doi.org/10.1093/gerona/glx104]
[91]
Hartman RE, Shah A, Fagan AM, Schwetye KE, Parsadanian M, Schulman RN, et al. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 2006; 24: 506-15.
[92]
Pu F, Mishima K, Irie K, Motohashi K, Tanaka Y, Orito K, et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 2007; 104: 329-34.
[93]
Solfrizzi V, Panza F, Torres F, Mastroianni F, Del Parigi A, Venezia A, et al. High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology 1999; 52: 1563-9.
[94]
Krikorian R, Shidler MD, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem 2010; 58: 3996-4000.
[http://dx.doi.org/10.1021/jf9029332]
[95]
Colucci L, Bosco M, Rosario ZA, Rea R, Amenta F, Fasanaro AM. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: A review. J Exp Pharmacol 2012; 4: 163-72.
[http://dx.doi.org/10.2147/JEP.S35326]
[96]
Dartigues JF, Carcaillon L, Helmer C, Lechevallier N, Lafuma A, Khoshnood B. Vasodilators and nootropics as predictors of dementia and mortality in the PAQUID cohort. J Am Geriatr Soc 2007; 55: 395-9.
[97]
Ilieva IP, Hook CJ, Farah MJ. Prescription stimulants’ effects on healthy inhibitory control, working memory, and episodic memory: A Meta-analysis. J Cogn Neurosci 2015; 27: 1069-89.
[98]
Spencer RC, Devilbiss DM, Berridge CW. The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex. Biol Psychiatry 2015; 77: 940-50.
[http://dx.doi.org/10.1016/j.biopsych.2014.09.013]
[99]
Camfield DA, Stough C, Farrimond J, Scholey AB. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: A systematic review and meta-analysis. Nutr Rev 2014; 72: 507-22.
[100]
Battleday RM, Brem AK. Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: A systematic review. Eur Neuropsychopharmacol 2015; 25: 1865-81.
[http://dx.doi.org/10.1016/j.euroneuro.2015.07.028]
[101]
Ahmed AH, Oswald RE. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. J Med Chem 2010; 53: 2197-203.
[102]
Takeo S, Hayashi H, Miyake K, Takagi K, Tadokoro M, Takagi N, et al. Effects of delayed treatment with nebracetam on neurotransmitters in brain regions after microsphere embolism in rats. Br J Pharmacol 1997; 121: 477-8.
[103]
Oyaizu M, Narahashi T. Modulation of the neuronal nicotinic acetylcholine receptor-channel by the nootropic drug nefiracetam. Brain Res 1999; 822: 72-9.
[104]
Singh HK, Dhawan BN. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn. (Brahmi). Int J Pharmacol 1997; 29: 359-s65.
[105]
Anand T, Naika M, Swamy MSL, Khanum F. Antioxidant and DNA damage preventive properties of Bacopa monniera (L) wettst. Free Radic Antioxid 2011; 1: 84-90.
[106]
Kennedy DO, Scholey AB. Ginseng: Potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 2003; 75: 687-700.
[107]
Qu ZQ, Zhou Y, Zeng YS, Li Y, Chung P. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implication of anti-oxidative and neuroprotective effects. Biomed Environ Sci 2009; 22(4): 318-26.
[108]
Cervenka F, Jahodár L. Plant metabolites as nootropics and cognitives. Ceska Slov Farm 2006; 55: 219-29.
[109]
Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, Smoker J. Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology 2002; 27: 279-81.
[http://dx.doi.org/10.1016/s0893-133x(01)00419-5]
[110]
Onaolapo OJ, Onaolapo AY. Effects of Ginsomin® on Selected Behaviours in Mice. Int J Neurosci Behav Sci 2017; 5: 45-54.
[http://dx.doi.org/10.13189/ijnbs.2017.050301]
[111]
Silberstein RB, Pipingas A, Song J, Camfield DA, Nathan PJ, Stough C. Examining brain-cognition effects of Ginkgo biloba extract: Brain activation in the left temporal and left prefrontal cortex in an object working memory task evidence-based complement. Alt Med 2011; 2011164139
[http://dx.doi.org/10.1155/2011/164139]
[112]
Fehske CJ, Leuner K, Müller WE. Ginkgo biloba extract (EGb761®) influences monoaminergic neurotransmission via inhibition of NE uptake, but not MAO activity after chronic treatment. Pharmacol Res 2009; 60: 68-73.
[113]
Sloley B, Pang P, Huang B, Ba F, Li F, Benishin C, et al. American ginseng extract reduces scopolamine-induced amnesia in a spatial learning task. J Psychiatry Neurosci 1999; 24: 442.
[114]
Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY, et al. An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer’s disease. Eur J Neurol 2008; 15: 865-8.
[115]
Lee ST, Chu K, Sim JY, et al. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008; 22: 222-6.
[116]
Liu L, Hoang-Gia T, Wu H, Lee MR, Gu L, Wang C, et al. Ginsenoside Rb1 improves spatial learning and memory by regulation of cell genesis in the hippocampal subregions of rats. Brain Res 2001; 25(1382): 147-54.
[http://dx.doi.org/10.1016/j.brainres.2011.01.051]
[117]
Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb bacopa monnieri. Rejuvenation Res 2013; 16: 313-26.
[http://dx.doi.org/10.1089/rej.2013.1431]
[118]
Beer AL, Vartak D, Greenlee MW. Nicotine facilitates memory consolidation in perceptual learning. Neuropharmacology 2013; 64: 443-51.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.019]
[119]
Molas S, Gener T, Güell J, Martín M, Ballesteros-Yáñez I, Sanchez-Vives MV, et al. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice. Acta Neuropathol Commun 2014; 11: 147.
[http://dx.doi.org/10.1186/s40478-014-0147-1]
[120]
Palmeri A, Mammana L, Tropea MR, Gulisano W, Puzzo D. Salidroside, a bioactive compound of Rhodiola Rosea, ameliorates memory and emotional behavior in adult mice. J Alzheimers Dis 2016; 52: 65-75.
[http://dx.doi.org/10.3233/JAD-151159]
[121]
Gray NE, Magana AA, Lak P, Wright KM, Quinn J, Stevens JF, et al. Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev 2018; 17: 161-94.
[122]
Brandalise F, Cesaroni V, Gregori A, Repetti M, Romano C, Orrù G, et al. Dietary supplementation of Hericium erinaceus increases mossy Fiber-CA3 hippocampal neurotransmission and recognition memory in wild-type mice evidence-based complement. Alt Med 2017; 20173864340
[http://dx.doi.org/10.1155/2017/3864340]
[123]
Johnson SL, Park HY, DaSilva NA, Vattem DA, Ma H, Seeram NP. Levodopa-reduced Mucuna pruriens seed extract shows neuroprotective effects against Parkinson’s disease in murine microglia and human neuroblastoma cells, caenorhabditis elegans, and Drosophila melanogaster. Nutrients 2018; 10 pii: E1139
[http://dx.doi.org/10.3390/nu10091139]
[124]
Matsuda H, Murakami T, Kishi A, Yoshikawa M. Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 2001; 9: 1499-507.
[125]
Manchanda S, Kaur G. Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC Complement Altern Med 2017; 17: 136.
[http://dx.doi.org/10.1186/s12906-017-1652-0]
[126]
Thangthaeng N, Poulose SM, Gomes SM, Miller MG, Bielinski DF, Shukitt-Hale B. Tart cherry supplementation improves working memory, hippocampal inflammation, and autophagy in aged rats. Age (Dordr) 2016; 38: 393-404.
[http://dx.doi.org/10.1007/s11357-016-9945-7]
[127]
Malkova L, Kozikowski AP, Gale K. The effects of huperzine A and IDRA 21 on visual recognition memory in young macaques. Neuropharmacology 2011; 60: 1262-8.
[http://dx.doi.org/10.1016.]
[128]
Shang Y, Wang L, Li Y, Gu PF. Vinpocetine improves scopolamine induced learning and memory dysfunction in C57 BL/6J mice. Biol Pharm Bull 2016; 39: 1412-8.
[http://dx.doi.org/10.1248/bpb.b15-00881]
[129]
Lardner AL. Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders. Nutr Neurosci 2014; 17: 145-55.
[http://dx.doi.org/10.1179/1476830513Y.0000000079]
[130]
Takeda A, Sakamoto K, Tamano H, Fukura K, Inui N, Suh SW, et al. Facilitated neurogenesis in the developing hippocampus after intake of theanine, an amino acid in tea leaves, and object recognition memory. Cell Mol Neurobiol 2011; 31: 1079-88.
[http://dx.doi.org/10.1007/s10571-011-9707-0]
[131]
Van de Rest O, Bloemendaal M, De Heus R, Aarts E. Dose-Dependent effects of oral tyrosine administration on plasma tyrosine levels and cognition in aging. Nutrients 2017; 9: 1279.
[http://dx.doi.org/10.3390/nu9121279]
[132]
Lu CL, Tang S, Meng ZJ, He YY, Song LY, Liu YP, et al. Taurine improves the spatial learning and memory ability impaired by sub-chronic manganese exposure. J Biomed Sci 2014; 21: 51.
[http://dx.doi.org/10.1186/1423-0127-21-51]
[133]
Kim HY, Kim HV, Yoon JH, Kang BR, Cho SM, Lee S, et al. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer’s disease. Sci Rep 2014; 4: 7467.
[http://dx.doi.org/10.1038/srep07467]
[134]
Kobayashi S, Iwamoto M, Kon K, Waki H, Ando S, Tanaka Y. Acetyl-L-carnitine improves aged brain function. Geriatr Gerontol Int 2010; 10: S99-S106.
[http://dx.doi.org/10.1111/j.1447-0594.2010.00595.x]
[135]
Coombes AJ. Dictionary of Plant Names. London, UK: Hamlyn Books 1994.
[136]
Nakanishi K. Terpene trilactones from Gingko biloba: From ancient times to the 21st century. Bioorg Med Chem 2005; 13: 4987-5000.
[137]
Serrano-García N, Pedraza-Chaverri J, Mares-Sámano JJ, Orozco-Ibarra M, Cruz-Salgado A, Jiménez-Anguiano A, et al. Antiapoptotic effects of EGb 761. Evid Based Complement Alternat Med 2013; 2013495703
[http://dx.doi.org/10.1155/2013/495703]
[138]
Droy-Lefaix MT. Effect of the antioxidant action of Ginkgo biloba extract (EGb 761) on aging and oxidative stress. Age (Omaha) 1997; 20(3): 141-9.
[http://dx.doi.org/10.1007/s11357-997-0013-1]
[139]
Snitz BE, O’Meara ES, Carlson MC, Arnold AM, Ives DG, Rapp SR, et al. Ginkgo Evaluation of Memory (GEM) study investigators Ginkgo biloba for preventing cognitive decline in older adults: A randomized trial. JAMA 2009; 302: 2663-70.
[http://dx.doi.org/10.1001/jama.2009.1913]
[140]
Chen X, Salwinski S, Lee TJ. Extracts of Ginkgo biloba and ginsenosides exert cerebral vasorelaxation via a nitric oxide pathway. Clin Exp Pharmacol Physiol 1997; 24: 958-9.
[141]
Huang SY, Jeng C, Kao SC, Yu JJ, Liu DZ. Improved haemorrheological properties by Ginkgo biloba extract (Egb 761) in type 2 diabetes mellitus complicated with retinopathy. Clin Nutr 2004; 23: 615-21.
[142]
Huguet F, Tarrade T. Alpha 2-adrenoceptor changes during cerebral ageing. The effect of Ginkgo biloba extract. J Pharm Pharmacol 1992; 44: 24-7.
[143]
Hadjiivanova CI, Petkov VV. Effect of Ginkgo biloba extract on beta-adrenergic receptors in different rat brain regions. Phytother Res 2002; 16: 488-90.
[144]
Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013; 37: 1-7.
[145]
Geng J, Dong J, Ni H, Lee MS, Wu T, Jiang K, et al. Ginseng for cognition. Cochrane Database Syst Rev 2010. (2:CD007769.
[http://dx.doi.org/10.1002/14651858.CD007769.pub2.]
[146]
Xie JT, Mchendale S, Yuan CS. Ginseng and diabetes. Am J Chin Med 2005; 33: 397-404.
[147]
Lee Y, Oh S. Administration of red ginseng ameliorates memory decline in aged mice. J Ginseng Res 2015; 39: 250-6.
[http://dx.doi.org/10.1016/j.jgr.2015.01.003]
[148]
Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem Pharmacol 1999; 58: 1685-93.
[149]
Zhang JT, Qu ZW, Liu Y, Deng HL. Preliminary study on the antiamnestic mechanism of ginsenoside Rg1 and Rb1. Eur J Pharmacol 1990; 183: 1460-1.
[150]
Tsang D, Yeung HW, Tso WW, Peck H. Ginseng saponins: Influence on neurotransmitter uptake in rat brain synaptosomes. Planta Med 1985; 3: 221-4.
[151]
Jin SH, Park JK, Nam KY, Park SN, Jung NP. Korean red ginseng saponins with low ratios of protopanaxadiol and protopanaxatriol saponin improve scopolamine-induced learning disability and spatial working memory in mice. J Ethnopharmacol 1999; 66(2): 123-9.
[152]
Li W, Fitzloff JF. HPLC determination of ginsenosides content in ginseng dietary supplements using ultraviolet detection. J Liq Chromatogr Relat Technol 2002; 25: 2485-500.
[http://dx.doi.org/10.1081/JLC-120014269]
[153]
Zhu S, Zou K, Fushimi H, Cai S, Komatsu K. Comparative study on triterpene saponins of Ginseng drugs. Planta Med 2004; 70: 666-77.
[http://dx.doi.org/10.1055/s-2004-827192]
[154]
Scholey A, Ossoukhova A, Owen L, Ibarra A, Pipingas A, He K, et al. Effects of American ginseng (Panax quinquefolius) on neurocognitive function: An acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology 2010; 212: 345-56.
[http://dx.doi.org/10.1007/s00213-010-1964-y]
[155]
Kulkarni R, Girish KJ, Kumar A. Nootropic herbs (medhya rasayana) in ayurveda: An update. Pharmacogn Rev 2012; 6: 147-53.
[http://dx.doi.org/10.4103/0973-7847.99949]
[156]
Sharma PC, Yelne MB, Dennis TJ. Database on Medicinal plants used in Ayurveda and Sidha Vol 1. New Delhi: CCRAS, Dept. of AYUSH, Ministry of Health and Family Welfare, Govt. of India 2005; pp. 26-6.
[157]
Kuroda M, Mimaki Y, Sashida Y, Mae T, Kishida H, Nishiyama T, et al. Phenolics with PPAR-gamma ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice. Bioorg Med Chem Lett 2003; 13: 4267-72.
[158]
Dhingra D, Parle M, Kulkarni SK. Memory enhancing activity of Glycyrrhiza glabra in mice. J Ethnopharmacol 2004; 91: 361-5.
[159]
Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP. Bacopa monniera Linn as an antioxidant: Mechanism of action. Indian J Exp Biol 1996; 34: 523-6.
[160]
Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 2000; 14: 174-9.
[161]
Rehni AK, Pantlya HS, Shri R, Singh M. Effect of chlorophyll and aqueous extracts of Bacopa monniera and Valeriana wallichii on ischaemia and reperfusion-induced cerebral injury in mice. Indian J Exp Biol 2007; 45: 764-9.
[162]
Anand T, Naika M, Swamy MSL, Khanum F. Antioxidant and DNA damage preventive properties of Bacopa monniera (L) wettst. Free Radic Antioxid 2011; 1: 84-90.
[163]
Girish SA, Barabde U, Wadodkar S, Dorle A. Effect of Bramhi Ghrita, an polyherbal formulation on learning and memory paradigms in experimental animals. Indian J Pharmacol 2004; 36: 159-62.
[164]
Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-mee W. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia oxidative. Med Cell Longev 2013; 2013695936
[http://dx.doi.org/10.1155/2013/695936]
[165]
Joshi H, Parle M. Cholinergic basis of memory-strengthening effect of Foeniculum vulgare linn. J Med Food 2006; 9: 413-7.
[http://dx.doi.org/10.1089/jmf.2006.9.413]
[166]
Joshi H, Parle M. Nardostachys jatamansiImproves learning and memory in mice. J Med Food 2006; 9:: 113-8.
[http://dx.doi.org/10.1089/jmf.2006.9.113]
[167]
Metcalf RL. Ullmann’s Encyclopedia of Industrial Chemistry. 1989. Insect control.
[168]
Lloyd GK, Williams M. Neuronal nicotinic acetylcholine receptors as novel drug targets. J Pharmacol Exp Ther 2000; 292: 461-7.
[169]
Levin ED. Nicotinic systems and cognitive function. Psychopharmacology 1992; 108: 417-31.
[http://dx.doi.org/10.1007/BF02247415]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 1
Year: 2019
Page: [2 - 14]
Pages: 13
DOI: 10.2174/1874609812666190311160754

Article Metrics

PDF: 16
HTML: 3
EPUB: 1
PRC: 1