Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Azoimine Chelated Ruthenium(II)- and Osmium(II)-Carbonyl Complex Catalyzed Alcohol Oxidation Reaction

Author(s): Chittaranjan Sinha*

Volume 6, Issue 2, 2019

Page: [139 - 157] Pages: 19

DOI: 10.2174/2213337206666190311130604

Abstract

Arylazoimidazole brings azoimine (-N=N-C=N-) chelating N(azo), N(imine) (abbreviated - N, N/) centres and forms Ru(II) and Os(II) carbonyl complexes. These complexes act as catalysts for the oxidation of alcohols to aldehydes/ketones by tertiary butyl hydro peroxide (ButOOH), hydrogen peroxide (H2O2) and N-methylmorpholine-N-oxide (NMO) as oxygen sources. Different substituted arylazoimidazoles such as 1-alkyl-2-(arylazo)imidazoles (RaaiR/), 1-alkyl-2-(naphthyl-α/β- azo)imidazoles (α/β-NaiR) and (1-alkyl-2-{(o-thioalkyl)phenylazo}imidazole, SRaaiNR/) are used to prepare Ru/Os-CO complexes. Ancillary ligands like hydride (H-), chloride (Cl-), triphenylphosphine (PPh3) are used to monitor the catalytic efficiency of the complexes. Aromatic and aliphatic alcohols like benzyl alcohol, 2-butanol, cyclopentanol, cyclohexanol, 1-phenylethanol, cinnamyl alcohol, diphenylmethanol, are oxidized to the corresponding benzaldehyde, 2-butanone, cyclopentanone, cyclohexanone, phenylacetone, cinamaldehyde, cyclopentanone, benzophenone, respectively. Different physicochemical analyses (FT-IR, UV-Vis, Mass, NMR) suggest that the complexes react with an oxidant to yield high valent ruthenium/osmium-oxo species (RuIV=O; OsIV=O), which is capable of transferring the oxygen atom to alcohols. GC analysis accounts that percentage conversion order is as follows : Cinnamyl alcohol > Cyclohexanol ~ 1-Phenylethanol > Diphenylmethanol > Cyclopentanol > 2-Butanol > Benzyl alcohol. The oxidation efficiency of the oxidant follows the order : NMO > ButOOH > H2O2. RuII complexes are more potent catalysts than OsII complexes. Out of three series of RuII complexes, [RuCl(CO)(SMeaaiNEt)]ClO4 and [RuCl(CO)(SEtaaiNMe)]ClO4 showed highest catalytic efficiency amongst 32 catalysts.

Keywords: Arylazoimidazoles, azoimine, catalysts, catalyzed alcohol, osmium, ruthenium.

Graphical Abstract
[1]
Penny, D.G. Carbon Monoxide Toxicity, 1st Ed; , 2000. CRC Publication..
[2]
Hanley, M.E.; Patel, P.H. Carbon Monoxide Toxicity In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018; https://www.ncbi.nlm.nih.gov/books/NBK430740/.
[3]
Elschenbroich, C.; Salzer, A. Organometallics: A Concise Introduction, (2nd ed); Wiley-VCH: Weinheim, 1992.
[4]
Dutta, D.K.; Deb, B. Potential rhodium and ruthenium carbonyl complexes of phosphine-chalcogen (P-O/S/Se) donor ligands and catalytic applications. Coord. Chem. Rev., 2011, 255, 1686-1712.
[5]
Cotton, F.A. Wilkinson, G. Advanced Inorganic Chemistry, 4th ed; , 1980. John Wiley & Sons.
[6]
Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes; Academic: London, 1992.
[7]
Kalyanasundaram, K.; Gratzel, M., Eds.; Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds; Kluwer Academic Publishers: Dordrecht, 1993.
[8]
Zhang, X.; Rodgers, M.A.J. Energy and electron transfer reactions of the MLCT state of ruthenium tris(bipyridyl) with molecular oxygen: A laser flash photolysis study. J. Phys. Chem., 1995, 99, 12797-12803.
[9]
Indelli, M.T.; Scandola, F. Collin; J.-P. Sauvage; J.-P.; Sour, A. Photoinduced electron and energy transfer in rigidly bridged Ru(II)−Rh(III) binuclear complexes. Inorg. Chem., 1996, 35, 303-312.
[10]
Frediani, P.; Bianchi, M.; Salvini, A.; Guarducci, R.; Carluccio, L.C.; Piacenti, F. Ruthenium carbonyl carboxylates with nitrogen-containing ligands: II. Synthesis and characterization of mononuclear compounds. J. Organomet. Chem., 1994, 476, 7-11.
[11]
Collomb-Dunnand-Sauthier, M-N.; Deronzier, A.; Ziessel, R. Electrocatalytic reduction of CO2 in water on a polymeric [Ru0(bpy)(CO)2n](bpy = 2,2′-bipyridine) complex immobilized on carbon electrodes. J. Chem. Soc. Chem. Commun., 1994, 0, 189-191.
[12]
Clark, M.J.; Stubbs, M. Metal Ions in Biological System: Interactions of Metal Ions with Nucleotides: Nucleic Acids, and Their Constituents. CRS Press. Taylor & Francis Group: UK., 1996, 32, 727-772.
[13]
Stemp, E.D.A.; Barton, J.K. Metal Ions in Biological System: Probing of Nucleic Acids by Metal Ion Complexes of Small Molecules. CRS Press. Taylor & Francis Group: UK., 1996, 33, 325.
[14]
Gupta, N.; Grover, N.; Neyhart, G.A.; Sing, P.; Throp, H.H. Synthesis and properties of new DNA cleavage agents based on oxoruthenium(IV). Inorg. Chem., 1993, 32, 310-316.
[15]
Hagfeldt, A.; Gratzel, M. Light-induced redox reactions in nano crystalline systems. Chem. Rev., 1995, 95, 49-68.
[16]
Ortmans, I.; Moucheron, C.; Kirsch-De Mesmaeker, A. Ru(II) polypyridine complexes with a high oxidation power. Comparison between their photoelectrochemistry with transparent SnO2 and their photochemistry with desoxyribonucleic acids. Coord. Chem. Rev., 1998, 168, 233-271.
[17]
Haukka, M.; Ahlgren, M.; Pakkanen, T.A. Reactions of [Ru(bipy)(CO)2Cl2] in aqueous HX and HX-HNO3 solutions (X = F, Br or I; bipy = 2,2′-bipyridine). J. Chem. Soc., Dalton Trans., 1996, 0, 1927-1933.
[18]
Haukka, M.; Kiviaho, J.; Ahlgren, M.; Pakkanen, T.A. Studies on catalytically active ruthenium carbonyl bipyridine systems. synthesis and structural characterization of [Ru(bpy)(CO)2Cl2], [Ru(bpy) (CO)2Cl(C(O)OCH3)], [Ru(bpy)(CO)2Cl]2, and [Ru(bpy)(CO)2ClH] (bpy = 2,2′-Bipyridine). Organometallics, 1995, 14, 825-833.
[19]
Deacon, G.B.; Patrick, J.M.; Skelton, B.W.; Thomas, N.C.; White, A.H. Ruthenium carbonyl complexes. III. Peparations, properties and structures of dicarbonyl- and monocarbonyl-(2,2′:6′,2”-terpyridyl)ruthenium(II) complexes. Aust. J. Chem., 1984, 37, 929-945.
[20]
Choudhury, D.; Jones, R.F.; Smith, G.; Cole-Hamilton, D.J. Cationic carbonyl complexes of ruthenium(II) containing 2,2′-bipyridyl or 1,10-phenanthroline. J. Chem. Soc., Dalton Trans., 1982, 0, 1143-1146.
[21]
Thomas, N.C.; Fischer, J. Ruthenium carbonyl complexes of n-heterocyclic molecules. Part 2. preparation, protonation and decarbonylation reactions of complexes with a bidentate terpyridyl ligand. structure of [Ru(CO)2(phen)(tpyH)](BF4)3. J. Coord. Chem., 1990, 21, 119-128.
[22]
Tanaka, B.; Tzeng, B-C.; Nagao, H.; Pentg, S-M.; Tanaka, T. Comparative study on crystal structures of ruthenium bipyridine carbonyl complexes [Ru(bpy)2(CO)2](PF6)2, [Ru(bpy)2(CO)(C(O) OCH3)]B(C6H5)4.CH3CN, and [Ru(bpy)2(CO)(-CO2)]. 3H2O (bpy = 2,2′-bipyridyl). Inorg. Chem., 1993, 32, 1508-1512.
[23]
Frediani, P.; Bianchi, M.; Salvini, A.; Guarducci, R.; Carluccio, L.C.; Piacenti, F.; Ianelli, S.; Nardelli, M. Ruthenium carbonyl carboxylates with nitrogen-containing ligands I. Syntheses and characterization of binuclear compounds. J. Organomet. Chem., 1993, 463, 187-198.
[24]
Fritsch, N.; Wick, C.R.; Waidmann, T.; Pflock, S.; Dral, P.O.; Tucher, J.; Steiner, C.; Shubina, T.E.; Maier, S.; Clark, T.; Burzlaff, N. 1D Chains of dirutheniumtetracarbonyl sawhorse complexes. Eur. J. Inorg. Chem., 2018, 2018, 54-61.
[25]
Shiu, K-B.; Lee, W-M.; Wang, C-L.; Wang, S-L.; Liao, P-L.; Wang, J-C.; Liou, L-S.; Peng, S-M.; Lee, G-H.; Chiang, M.Y. Specific synthesis and reaction of hetero- and homobridgeddiruthenium carbonyl complexes containing one or two μ-Azolato bridges. Organometallics, 1996, 15, 2979-2987.
[26]
Hui, J.W-S.; Wong, W-T. Synthesis, characterisation, molecular and crystal structures of two novel osmium-palladium carbide carbonyl clusters. J. Chem. Soc., Dalton Trans., 1996, 2887-2888.
[27]
Venalainen, T.; Pursiainen, J.; Pakkanen, T.A. Ligand substitution of Ru3(CO)12 with 2,2′-bipyridine (bipy). X-Ray crystal structure of Ru3(CO)10(bipy). J. Chem. Soc. Chem. Commun., 1985, 1348-1349.
[28]
Shivakumar, M.; Pramanik, K.; Bhattacharyya, I.; Chakravorty, A. Chemistry of metal-bound anion radicals. A family of mono- and bis(azopyridine) chelates of bivalent ruthenium. Inorg. Chem., 2000, 39, 4332-4338.
[29]
Trost, B.M.; Frederiksen, M.U.; Rudd, M.T. Ruthenium-catalyzed reactions - a treasure trove of atom-economic transformations. Angew. Chem. Int. Ed., 2005, 44, 6630-6666.
[30]
Wu, L.; Liu, Q.; Fleischer, I.; Jackstell, R.; Beller, M. Ruthenium-catalysedalkoxycarbonylation of alkenes with carbon dioxide. Nat. Commun., 2014, 5, 3091-3097.
[31]
Bakker, J.; Hartl, F.; Stufkens, D.J.; Jina, O.S.; Sun, X-Z.; George, M.W. Alkene-stabilized biradical and zwitterionic photoproducts of the clusters [Os3(CO)10(α-diimine)]: A time-resolved transient absorption and infrared study. Organometallics, 2000, 19, 4310-4319.
[32]
Nijhoff, J.; Bakker, M.J.; Hartl, F.; Stufkens, D.J.; Fu, W-F.; van Eldik, R. Photochemistry of the triangular clusters Os3(CO)10(α-diimine): homolysis of an Os−Os bond and solvent-dependent formation of biradicals and zwitterions. Inorg. Chem., 1998, 37, 661-668.
[33]
Nijhoff, J.; Hartl, F.; van Outersterp, J.W.M.; Stufkens, D.J.; Calhorda, M.J.; Veiros, L.F. Remarkably stable radical anions derived from clusters [HOs3(CO)9(L)], L=ortho-metallatedα-diimine: a spectro-electrochemical study and theoretical rationalization. J. Organomet. Chem., 1999, 573, 121-133.
[34]
Nijhoff, J.; Hartl, F.; Stufkens, D.J.; Fraanje, J. Light-Induced insertion of a CO ligand into an Os−N bond of the clusters Os3(CO)10(L), where L represents a potentially terdentate N,N‘-chelating α-Diimine. Organometallics, 1999, 18, 4380-4389.
[35]
Haukka, M.; Venalainen, T.; Kallinen, M.; Pakkanen, T.A. Chemically activated ruthenium mono(bipyridine)/SiO2 catalysts in water-gas shift reaction. J. Mol. Catal., 1998, 136, 127-134.
[36]
Lehn, J-M.; Ziessel, R. Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t́-bipyridine- or 1,10-phenanthroline-ruthenium(II) complexes. J. Organomet. Chem., 1990, 382, 157-173.
[37]
Hadda, T.B.; Zidane, I.; Moya, S.A.; Bozec, H.L. Soluble ruthenium carbonyl complexes containing new sterically hindered bipyridine ligands. Polyhedron, 1996, 15, 1571-1573.
[38]
Haukka, M.; Kiviaho, J.; Ahlgren, M.; Pakkanen, T.A. Studies on catalytically active ruthenium carbonyl bipyridine systems. Synthesis and structural characterization of [Ru(bpy)(CO)2Cl2], [Ru(bpy) (CO)2Cl(C(O)OCH3)], [Ru(bpy)(CO)2Cl]2, and [Ru(bpy)(CO)2ClH] (bpy = 2,2′-Bipyridine). Organometallics, 1995, 14, 825-833.
[39]
Kepert, C.M.; Deacon, G.B.; Sahely, N.; Spiccia, L.; Fallon, G.D.; Skelton, B.W.; White, A.H. Synthesis of heteroleptic bis (diimine) carbonylchlororuthenium (II) complexes from photodecarbonylated precursors. Inorg. Chem., 2004, 43, 2818-2827.
[40]
Chelucci, G.; Baldino, S.; Baratta, W. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions. Acc. Chem. Res., 2015, 48, 363-379.
[41]
Mathur, T.; Dinda, J.; Datta, P.; Liou, J-C.; Lu, T-H.; Sinha, C. Ru(0)-azoimine-carbonyl and Ru(II)-pyridyl-azo-imidazole complexes. Polyhedron, 2006, 25, 2503-2512.
[42]
Cabeza, J.A.; del Rio, I.; Martinez-Mendez, L.; Miguel, D. Ruthenium‐cluster‐mediated activation of all bonds of a methyl group of 6,6′‐dimethyl‐2,2′‐bipyridine and 2,9‐dimethyl‐1,10‐phenanthroline: transformation of the latter into a 2‐alkenyl‐9‐methyl‐1,10‐phenanthroline ligand. Chem. Eur. J, 2006, 12, 1529-1538.
[43]
Gobetto, R.; Nervi, C.; Romanin, B.; Salassa, L.; Milanesio, M.; Croce, G. X-ray structures and complete NMR assignment by DFT calculations of [Os(bpy)2(CO)Cl]PF6 and [Os(bpy)2(CO)H]PF6 complexes. Organometallics, 2003, 22, 4012-4019.
[44]
Leadbeater, N.E.; Lewis, J.; Raithby, P.R.; Ward, G.N. Photochemistry of [Ru3(CO)12] with nitrogenheterocycles. J. Chem. Soc., Dalton Trans., 1997, 0, 2511-2516.
[45]
Deeming, A.J.; Peters, R.; Hurthouse, M.B.; Backer-Dirks, J.D.J. Ortho-metallation reactions of 2-substituted pyridines, 1,2-, 1,3-, and 1,4-diazines, and 2,2′-bipyridyl with triosmium clusters. Crystal and molecular structure of nonacarbonyl-µ-(2,2′-bipyridyl-6-yl)-µ-hydrido-triangulo-triosmium(3Os-Os). J. Chem. Soc., Dalton Trans., 1982, 0, 787-791.
[46]
Shivakumar, M.; Pramanik, K.; Ghosh, P.; Chakravorty, A. Isolation and structure of the first azo anion radical complexes of ruthenium. Inorg. Chem., 1998, 37, 5968-5969.
[47]
Shivakumar, M.; Pramanik, K.; Ghosh, P.; Chakravorty, A. Synthesis and characterisation of a pair of azo anion radicals bonded to ruthenium (II). Chem. Commun. , 1998, 0, 2103-2104.
[48]
Shivakumar, M.; Pramanik, K.; Bhattacharyya, I.; Chakravorty, A. Chemistry of metal-bound anion radicals. A family of mono-and bis (azopyridine) chelates of bivalent ruthenium. Inorg. Chem., 2000, 39, 4332-4338.
[49]
Mondal, T.K.; Sarker, S.K.; Raghavaiah, P.; Sinha, C. Chemistry of metal-bound anion radicals. A family of mono-and bis (azopyridine) chelates of bivalent ruthenium. Polyhedron, 2008, 27, 3020-3028.
[50]
Mondal, T.K.; Dinda, J.; Cheng, J.; Lu, T.H.; Sinha, C. Structure, spectra and electrochemistry of ruthenium-carbonyl complexes of naphthylazoimidazole. Inorg. Chim. Acta, 2008, 361, 2431-2438.
[51]
Mondal, T.K.; Mathur, T.; Slawin, A.M.Z.; Woollins, J.D.; Sinha, C. Imidazole imidazolidine. Preparation by reduction of with NaBH4 and characterisation of the products (PyaiR = 1-alkyl-2-3′-(pyridylazo)imidazole). J. Organomet. Chem., 2007, 692, 1472-1481.
[52]
Mondal, T.K.; Dinda, J.; Slawin, A.M.Z.; Woollins, J.D.; Sinha, C. Osmium-carbonyl complexes of naphthylazoimidazoles. Single crystal X-ray structure of [Os(H)(CO)(PPh3)2(α-NaiEt)](PF6) α-NaiEt = 1-ethyl-2-(naphthyl-α-azo)imidazole. Polyhedron, 2007, 26, 600-606.
[53]
Ooyama, D.; Saito, M. Synthesis, characterization and reactivity of polypyridylruthenium(II) carbonyl complexes with phosphine derivatives: Ruthenium-carbon bond labilization based on steric and electronic effects. Inorg. Chim. Acta, 2006, 359, 800-806.
[54]
Moya, S.A.; Vidal, M.; Brown, K.; Negrete-Vergara, C. barca, A.; Aguirre, P. Ruthenium carbonyl compounds containing polypyridine ligands as catalysts in the reaction of N-benzylideneaniline hydrogenation. Inorg. Chem. Commun., 2012, 22, 146-148.
[55]
Gregor, C.; Hermanek, M.; Jancik, D.; Pechousek, J.; Filip, J.; Hrbac, J.; Zboril, R. The effect of surface area and crystal structure on the catalytic efficiency of iron (III) oxide nanoparticles in hydrogen peroxide decomposition. Eur. J. Inorg. Chem., 2010, 2010, 2343-2351.
[56]
Rabe, V.; Frey, W.; Baro, A.; Laschat, S.; Bauer, M.; Bertagnolli, H.; Rajagopalan, S.; Asthalter, T.; Roduner, E.; Dilger, H.; Glaser, T.; Schnieders, D. Syntheses, crystal structures, spectroscopic properties, and catalytic aerobic oxidations of novel trinuclear non‐heme iron complexes. Eur. J. Inorg. Chem., 2009, 2009, 4660-4674.
[57]
Balasubramanian, K.P.; Parameswari, K.; Chinnusamy, V.; Prabhakaran, R.; Natarajan, K. Synthesis, characterization, electro chemistry, catalytic and biological activities of ruthenium (III) complexes with bidentate N, O/S donor ligands. Spectrochim. Acta Part A,, 2006, 65, 678-683.
[58]
Canali, L.; Sherrington, D.C. Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem. Soc. Rev., 1999, 28, 85-93.
[59]
Isse, A.A.; Gennara, A.; Viane, E. Mechanism of the electrochemical reduction of benzyl chlorides catalysed by Co(salen). J. Electroanal. Chem., 1998, 444, 241-245.
[60]
Liobet, A.; Hodgson, D.J.; Meyer, T.J. Synthesis, structure, and redox properties of the triaqua(tris(1-pyrazolyl)methane) ruthenium(II) cation. Inorg. Chem., 1990, 29, 3760-3766.
[61]
Liobet, A. Synthesis, spectral and redox properties of a new series of aqua complexes of ruthenium(II). Inorg. Chim. Acta, 1994, 221, 125-131.
[62]
Thron, J.R.; Wilkinson, G. Schiff-base complexes of ruthenium(II). Dalton Trans., 1978, 2, 110-115.
[63]
Claustro, I.G.; Sanchez, E.A.; Acquaye, J.H. Synthesis, spectroscopic and electrochemical properties of ruthenium-2-(2′-hydroxyphenyl)-benzoxazole complexes. Crystal structure of. [Ru(terpy)(HPB)Cl] Inorg. Chim. Acta, 2003, 342, 29-36.
[64]
Leung, W.H.; Che, C.M. Oxidation chemistry of ruthenium-salen complexes. Inorg. Chem., 1989, 28, 4619-4622.
[65]
Raju, V.V.; Balasubramanian, K.P.; Jayabalakrishnan, C.; Chinnusamy, V. Synthesis, spectral characterization, catalytic and biological studies of new Ru(II) carbonyl Schiff base complexes of active amines. Nat. Sci., 2011, 3, 542-550.
[66]
Thangadurai, T.D.; Ihm, S-K. Tetradentate schiff base ruthenium(ii) carbonyl complexes: synthesis, characterisation, catalytic and antibacterial studies. J. Ind. Eng. Chem., 2003, 9, 569-575.
[67]
Dobson, A.; Moore, D.S.; Robinson, S.D. Coordination, oligomerisation and transfer hydrogenation of acetylenes by some ruthenium and osmium carboxylates: Crystal and molecular structures of bis(trifluoroacetato)carbonyl-(methanol) bis(triphenylphosphine) ruthenium(II) and (1,4-diphenylbut-1-en-3-yn-2-yl)trifluoroacetato-(carbonyl) bis(triphenylphosphine)ruthenium(II). Polyhedron, 1985, 4, 1119-1130.
[68]
Hao, Z.; Li, N.; Yan, X.; Li, Y.; Zong, S.; Liu, H.; Han, Z.; and Lin, J. Ruthenium carbonyl complexes with pyridylalkanol ligands: synthesis, characterization and catalytic properties for aerobic oxidation of secondary alcohols. New J. Chem., 2018, 42, 6968-6975.
[69]
Hao, Z.; Yan, X.; Liu, K.; Yue, X.; Han, Z.; Lin, J. Ruthenium carbonyl complexes with pyridine-alkoxide ligands: synthesis, characterization and catalytic application in dehydrogenative oxidation of alcohols. New J. Chem., 2018, 42, 15472-15478.
[70]
Hao, Z.; Yan, X.; Li, Z.; Wu, R.; Ma, Z.; Li, S.; Han, Z.; Zheng, X.; Lin, J. Efficient aerobic oxidation of alcohols to aldehydes and ketones using a ruthenium carbonyl complex of a tert-butyl-substituted tetramethylcyclopentadienyl ligand as catalyst. Transition Met. Chem, 2018, 43, 635-640.
[71]
Sarkar, S.K.; Jana, M.S.; Mondal, T.K.; Sinha, C. Use of a Ru/Os-CO-diiodide precursor to synthesize heteroleptic 1-alkyl-2-(arylazo)imidazole complexes: The structural characterization, electrochemistry and catalytic activity. Polyhedron, 2013, 50, 246-254.
[72]
Haukka, M.; Venalainen, T.; Kallinen, M.; Pakkanen, T.A. Chemically activated ruthenium mono(bipyridine)/SiO2catalysts in water-gas shift reaction. J. Mol. Catal. A: Chemical, , 1998, 136, 127-134.
[73]
Ramesh, K.N.R.; Liu, Y. Synthesis, structure and catalytic activity of cycloruthenated carbonyl complexes containing arylazophenolate ligands. J. Mol. Catal. A: Chem., 2007, 265, 218-226.
[74]
Raja, M.U.; Gowri, N.; Ramesh, R. Synthesis, crystal structure and catalyticactivity of ruthenium (II) carbonyl complexes containing ONO and ONS donor ligands. Polyhedron, 2010, 29, 1175-1181.
[75]
Chutia, P.; Kumari, N.; Sharma, M.; Woollins, J.D.; Slawin, A.M.Z.; Dutta, D.K. Ruthenium(II) carbonyl complexes containingtertiary phosphine chalcogenide ligands of the type Ph3PX; X=O, S, Se. Polyhedron, 2004, 23, 1657-1661.
[76]
Cho, C.S.; Kim, D.Y.; Shim, S.C. Ruthenium-catalyzed oxidation of secondary alcohols assisted by a simple alkene. Bull. Korean Chem. Soc., 2005, 26, 802-804.
[77]
Jana, S.; Jana, M.S.; Biswas, S.; Sinha, C.; Mondal, T.K. Synthesis, electronic structure and catalytic activity of ruthenium-iodo-carbonyl complexes with thioether containing NNS donor ligand. J. Mol. Struct., 2014, 1065-1066, 52-60.
[78]
Sarkar, S.K.; Jana, M.S.; Mondal, T.K.; Sinha, C. Alcohol oxidation reactions catalyzed by ruthenium-carbonyl complexes of thioarylazoimidazoles. Appl. Organomet. Chem., 2014, 28, 641-651.
[79]
Kuramochi, Y.; Itabashi, J.; Fukaya, K.; Enomoto, A.; Yoshidaa, M.; Ishida, H. Unexpected effect of catalyst concentration on photochemical CO2 reduction by trans(Cl)- Ru(bpy)(CO)2Cl2: new mechanistic insight into the CO/HCOO selectivity. Chem. Sci. , 2015, 6, 3063-3074.
[80]
Mondal, T.K.; Sarker, S.K.; Raghavaiah, P.; Sinha, C. Ruthenium-carbonyl complexes of 1-alkyl-2-(arylazo) imidazoles: Synthesis, structure, spectra and redox properties. Polyhedron, 2008, 27, 3020-3028.
[81]
Haber, J.; Witko, M. Oxidation catalysis—electronic theory revisited. J. Cat., 2003, 216, 416-424.
[82]
Sarkar, S.K.; Jana, M.S.; Mondal, T.K.; Sinha, C. Ru(II)-halide-carbonyl complexes of naphthylazoimidazoles: Synthesis, spectra, electrochemistry, catalytic activity and electronic structure. J. Organomet. Chem., 2012, 716, 129-137.
[83]
Sarkar, S.K.; Jana, M.S.; Mondal, T.K.; Sinha, C. Os(II)-CO complexes of bidentate thioarylazoimidazoles and their catalytic efficiency to alcohol oxidation. J. Indian Chem. Soc., 2018, 95, 735-742.
[84]
Datta, P.; Sardar, D.; Panda, U.; Halder, A.; Manik, N.B.; Chen, C.J.; Sinha, C. Coumarinylazoimidazolyl complexes of osmium(II) hydridocarbonyls: spectroscopic and structural characterization, oxidation catalysis, photovoltaic effect and density functional theory computation. Appl. Organomet. Chem., 2016, 30, 323-334.

© 2024 Bentham Science Publishers | Privacy Policy