A Practical Perspective on the Evaluation of Small Molecule CNS Penetration in Drug Discovery

Author(s): Liyue Huang*, Mary C. Wells, Zhiyang Zhao.

Journal Name: Drug Metabolism Letters

Volume 13 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The separation of the brain from blood by the blood-brain barrier and the bloodcerebrospinal fluid (CSF) barrier poses unique challenges for the discovery and development of drugs targeting the central nervous system (CNS). This review will describe the role of transporters in CNS penetration and examine the relationship between unbound brain (Cu-brain) and unbound plasma (Cu-plasma) or CSF (CCSF) concentration. Published data demonstrate that the relationship between Cu-brain and Cu-plasma or CCSF can be affected by transporter status and passive permeability of a drug and CCSF may not be a reliable surrogate for CNS penetration. Indeed, CCSF usually over-estimates Cu-brain for efflux substrates and it provides no additional value over Cu-plasma as the surrogate of Cu-brain for highly permeable non-efflux substrates. A strategy described here for the evaluation of CNS penetration is to use in vitro permeability, P-glycoprotein (Pgp) and breast cancer resistance protein efflux assays and Cu-brain/Cu-plasma in preclinical species. Cu-plasma should be used as the surrogate of Cu-brain for highly permeable non-efflux substrates with no evidence of impaired distribution into the brain. When drug penetration into the brain is impaired, we recommend using (total brain concentration * unbound fraction in the brain) as Cu-brain in preclinical species or Cu-plasma/in vitro Pgp efflux ratio if Pgp is the major limiting mechanism for brain penetration.

Keywords: Blood-brain barrier, blood-CSF barrier, BCRP, CNS penetration, CSF, P-glycoprotein, unbound brain concentration.

[1]
Lin, J.H. CSF as a surrogate for assessing CNS exposure: an industrial perspective. Curr. Drug Metab., 2008, 9(1), 46-59.
[http://dx.doi.org/10.2174/138920008783331077] [PMID: 18220571 ]
[2]
Shen, D.D.; Artru, A.A.; Adkison, K.K. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv. Drug Deliv. Rev., 2004, 56(12), 1825-1857.
[http://dx.doi.org/10.1016/j.addr.2004.07.011] [PMID: 15381336 ]
[3]
Wong, A.D.; Ye, M.; Levy, A.F.; Rothstein, J.D.; Bergles, D.E.; Searson, P.C. The blood-brain barrier: an engineering perspective. Front. Neuroeng., 2013, 6, 7.
[http://dx.doi.org/10.3389/fneng.2013.00007] [PMID: 24009582 ]
[4]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949 ]
[5]
Polt, R.; Porreca, F.; Szabò, L.Z.; Bilsky, E.J.; Davis, P.; Abbruscato, T.J.; Davis, T.P.; Harvath, R.; Yamamura, H.I.; Hruby, V.J. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc. Natl. Acad. Sci. USA, 1994, 91(15), 7114-7118.
[http://dx.doi.org/10.1073/pnas.91.15.7114] [PMID: 8041755 ]
[6]
Dagenais, C.; Ducharme, J.; Pollack, G.M. Uptake and efflux of the peptidic delta-opioid receptor agonist. Neurosci. Lett., 2001, 301(3), 155-158.
[http://dx.doi.org/10.1016/S0304-3940(01)01640-8] [PMID: 11257421 ]
[7]
Bourasset, F.; Cisternino, S.; Temsamani, J.; Scherrmann, J.M. Evidence for an active transport of morphine-6-beta-d-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J. Neurochem., 2003, 86(6), 1564-1567.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01990.x] [PMID: 12950465 ]
[8]
Ambudkar, S.V.; Dey, S.; Hrycyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesman, M.M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol., 1999, 39, 361-398.
[http://dx.doi.org/10.1146/annurev.pharmtox.39.1.361] [PMID: 10331089 ]
[9]
Robey, R.W.; To, K.K.; Polgar, O.; Dohse, M.; Fetsch, P.; Dean, M.; Bates, S.E. ABCG2: a perspective. Adv. Drug Deliv. Rev., 2009, 61(1), 3-13.
[http://dx.doi.org/10.1016/j.addr.2008.11.003] [PMID: 19135109 ]
[10]
Urquhart, B.L.; Kim, R.B. Blood-brain barrier transporters and response to CNS-active drugs. Eur. J. Clin. Pharmacol., 2009, 65(11), 1063-1070.
[http://dx.doi.org/10.1007/s00228-009-0714-8] [PMID: 19727692 ]
[11]
Di, L.; Rong, H.; Feng, B. Demystifying brain penetration in central nervous system drug discovery. Miniperspective. J. Med. Chem., 2013, 56(1), 2-12.
[http://dx.doi.org/10.1021/jm301297f] [PMID: 23075026 ]
[12]
Cole, S.; Bagal, S.; El-Kattan, A.; Fenner, K.; Hay, T.; Kempshall, S.; Lunn, G.; Varma, M.; Stupple, P.; Speed, W. Full efficacy with no CNS side-effects: unachievable panacea or reality? DMPK considerations in design of drugs with limited brain penetration. Xenobiotica, 2012, 42(1), 11-27.
[http://dx.doi.org/10.3109/00498254.2011.617847] [PMID: 21970687 ]
[13]
Spector, R.; Keep, R.F.; Smith, Q.R.; Johanson, C.E. A balanced view of choroid;Keep, R.F.; Robert Snodgrass, S.; plexus structure and function: Focus on adult humans. Exp. Neurol., 2015, 4(267), 78-86.
[http://dx.doi.org/10.1016/j.expneurol.2015.02.032] [PMID: 25747036 ]
[14]
Taylor, E.A.; Jefferson, D.; Carroll, J.D.; Turner, P. Cerebrospinal fluid concentrations of propranolol, pindolol and atenolol in man: evidence for central actions of beta-adrenoceptor antagonists. Br. J. Clin. Pharmacol., 1981, 12(4), 549-559.
[http://dx.doi.org/10.1111/j.1365-2125.1981.tb01264.x] [PMID: 6117308 ]
[15]
Ghersi-Egea, J.F.; Finnegan, W.; Chen, J.L.; Fenstermacher, J.D. Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience, 1996, 75(4), 1271-1288.
[http://dx.doi.org/10.1016/0306-4522(96)00281-3] [PMID: 8938759 ]
[16]
Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147)147ra111
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675 ]
[17]
Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; Hillgren, K.M.; Hoffmaster, K.A.; Ishikawa, T.; Keppler, D.; Kim, R.B.; Lee, C.A.; Niemi, M.; Polli, J.W.; Sugiyama, Y.; Swaan, P.W.; Ware, J.A.; Wright, S.H.; Yee, S.W.; Zamek-Gliszczynski, M.J.; Zhang, L. International Transporter Consortium. Membrane transporters in drug development. Nat. Rev. Drug Discov., 2010, 9(3), 215-236.
[http://dx.doi.org/10.1038/nrd3028] [PMID: 20190787 ]
[18]
Uchida, Y.; Ohtsuki, S.; Katsukura, Y.; Ikeda, C.; Suzuki, T.; Kamiie, J.; Terasaki, T. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J. Neurochem., 2011, 117(2), 333-345.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07208.x] [PMID: 21291474 ]
[19]
Gao, B.; Vavricka, S.R.; Meier, P.J.; Stieger, B. Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS. Pflugers Arch., 2015, 467(7), 1481-1493.
[http://dx.doi.org/10.1007/s00424-014-1596-x] [PMID: 25132355 ]
[20]
Kamiie, J.; Ohtsuki, S.; Iwase, R.; Ohmine, K.; Katsukura, Y.; Yanai, K.; Sekine, Y.; Uchida, Y.; Ito, S.; Terasaki, T. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm. Res., 2008, 25(6), 1469-1483.
[http://dx.doi.org/10.1007/s11095-008-9532-4] [PMID: 18219561 ]
[21]
Ito, K.; Uchida, Y.; Ohtsuki, S.; Aizawa, S.; Kawakami, H.; Katsukura, Y.; Kamiie, J.; Terasaki, T. Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J. Pharm. Sci., 2011, 100(9), 3939-3950.
[http://dx.doi.org/10.1002/jps.22487] [PMID: 21254069 ]
[22]
Agarwal, S.; Uchida, Y.; Mittapalli, R.K.; Sane, R.; Terasaki, T.; Elmquist, W.F. Quantitative proteomics of transporter expression in brain capillary endothelial cells isolated from P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and P-gp/Bcrp knockout mice. Drug Metab. Dispos., 2012, 40(6), 1164-1169.
[http://dx.doi.org/10.1124/dmd.112.044719] [PMID: 22401960 ]
[23]
Hoshi, Y.; Uchida, Y.; Tachikawa, M.; Inoue, T.; Ohtsuki, S.; Terasaki, T. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J. Pharm. Sci., 2013, 102(9), 3343-3355.
[http://dx.doi.org/10.1002/jps.23575] [PMID: 23650139 ]
[24]
Schinkel, A.H.; Smit, J.J.; van Tellingen, O.; Beijnen, J.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.; van der Valk, M.A. Robanus- Maandag, E.C.; te Riele, H.P.J.; Berns, A.J.M.; Borst, P. Disruption of the mouse Mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 1994, 77, 491-502.
[http://dx.doi.org/10.1016/0092-8674(94)90212-7] [PMID: 7910522 ]
[25]
Schinkel, A.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.; Borst, P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest., 1995, 96(4), 1698-1705.
[http://dx.doi.org/10.1172/JCI118214] [PMID: 7560060 ]
[26]
Lankas, G.R.; Cartwright, M.E.; Umbenhauer, D. P-glycoprotein deficiency in a subpopulation of CF-1 mice enhances avermectin-induced neurotoxicity. Toxicol. Appl. Pharmacol., 1997, 143(2), 357-365.
[http://dx.doi.org/10.1006/taap.1996.8086] [PMID: 9144452 ]
[27]
Kusuhara, H.; Suzuki, H.; Terasaki, T.; Kakee, A.; Lemaire, M.; Sugiyama, Y. P-Glycoprotein mediates the efflux of quinidine across the blood-brain barrier. J. Pharmacol. Exp. Ther., 1997, 283(2), 574-580.
[PMID: 9353372 ]
[28]
Kim, R.B.; Fromm, M.F.; Wandel, C.; Leake, B.; Wood, A.J.; Roden, D.M.; Wilkinson, G.R. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest., 1998, 101(2), 289-294.
[http://dx.doi.org/10.1172/JCI1269] [PMID: 9435299 ]
[29]
Kwei, G.Y.; Alvaro, R.F.; Chen, Q.; Jenkins, H.J.; Hop, C.E.; Keohane, C.A.; Ly, V.T.; Strauss, J.R.; Wang, R.W.; Wang, Z.; Pippert, T.R.; Umbenhauer, D.R. Disposition of ivermectin and cyclosporin A in CF-1 mice deficient in mdr1a P-glycoprotein. Drug Metab. Dispos., 1999, 27(5), 581-587.
[PMID: 10220486 ]
[30]
Polli, J.W.; Jarrett, J.L.; Studenberg, S.D.; Humphreys, J.E.; Dennis, S.W.; Brouwer, K.R.; Woolley, J.L. Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm. Res., 1999, 16(8), 1206-1212.
[http://dx.doi.org/10.1023/A:1018941328702] [PMID: 10468021 ]
[31]
Yamazaki, M.; Neway, W.E.; Ohe, T.; Chen, I.; Rowe, J.F.; Hochman, J.H.; Chiba, M.; Lin, J.H. In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J. Pharmacol. Exp. Ther., 2001, 296(3), 723-735.
[PMID: 11181899 ]
[32]
Chen, C.; Hanson, E.; Watson, J.W.; Lee, J.S. P-glycoprotein limits the brain penetration of nonsedating but not sedating H1-antagonists. Drug Metab. Dispos., 2003, 31(3), 312-318.
[http://dx.doi.org/10.1124/dmd.31.3.312] [PMID: 12584158 ]
[33]
Evans, D.C.; O’Connor, D.; Lake, B.G.; Evers, R.; Allen, C.; Hargreaves, R. Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein. Drug Metab. Dispos., 2003, 31(7), 861-869.
[http://dx.doi.org/10.1124/dmd.31.7.861] [PMID: 12814962 ]
[34]
Doran, A.; Obach, R.S.; Smith, B.J.; Hosea, N.A.; Becker, S.; Callegari, E.; Chen, C.; Chen, X.; Choo, E.; Cianfrogna, J.; Cox, L.M.; Gibbs, J.P.; Gibbs, M.A.; Hatch, H.; Hop, C.E.; Kasman, I.N.; Laperle, J.; Liu, J.; Liu, X.; Logman, M.; Maclin, D.; Nedza, F.M.; Nelson, F.; Olson, E.; Rahematpura, S.; Raunig, D.; Rogers, S.; Schmidt, K.; Spracklin, D.K.; Szewc, M.; Troutman, M.; Tseng, E.; Tu, M.; Van Deusen, J.W.; Venkatakrishnan, K.; Walens, G.; Wang, E.Q.; Wong, D.; Yasgar, A.S.; Zhang, C. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab. Dispos., 2005, 33(1), 165-174.
[http://dx.doi.org/10.1124/dmd.104.001230] [PMID: 15502009 ]
[35]
Bundgaard, C.; Jensen, C.J.; Garmer, M. Species comparison of in vivo P-glycoprotein-mediated brain efflux using mdr1a-deficient rats and mice. Drug Metab. Dispos., 2012, 40(3), 461-466.
[http://dx.doi.org/10.1124/dmd.111.043083] [PMID: 22112383 ]
[36]
Liu, X.; Cheong, J.; Ding, X.; Deshmukh, G. Use of cassette dosing approach to examine the effects of P-glycoprotein on the brain and cerebrospinal fluid concentrations in wild-type and P-glycoprotein knockout rats. Drug Metab. Dispos., 2014, 42(4), 482-491.
[http://dx.doi.org/10.1124/dmd.113.055590] [PMID: 24398459 ]
[37]
Huang, L.; Li, X.; Roberts, J.; Janosky, B.; Lin, M.H. Differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain, CSF and peripheral nerve tissues in rats. Xenobiotica, 2015, 45(6), 547-555.
[http://dx.doi.org/10.3109/00498254.2014.997324] [PMID: 25539457 ]
[38]
Roulet, A.; Puel, O.; Gesta, S.; Lepage, J.F.; Drag, M.; Soll, M.; Alvinerie, M.; Pineau, T. MDR1-deficient genotype in Collie dogs hypersensitive to the P-glycoprotein substrate ivermectin. Eur. J. Pharmacol., 2003, 460(2-3), 85-91.
[http://dx.doi.org/10.1016/S0014-2999(02)02955-2] [PMID: 12559367 ]
[39]
Mealey, K.L.; Greene, S.; Bagley, R.; Gay, J.; Tucker, R.; Gavin, P.; Schmidt, K.; Nelson, F. P-glycoprotein contributes to the blood-brain, but not blood-cerebrospinal fluid, barrier in a spontaneous canine p-glycoprotein knockout model. Drug Metab. Dispos., 2008, 36(6), 1073-1079.
[http://dx.doi.org/10.1124/dmd.107.018978] [PMID: 18332085 ]
[40]
Enokizono, J.; Kusuhara, H.; Ose, A.; Schinkel, A.H.; Sugiyama, Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab. Dispos., 2008, 36(6), 995-1002.
[http://dx.doi.org/10.1124/dmd.107.019257] [PMID: 18322075 ]
[41]
Polli, J.W.; Olson, K.L.; Chism, J.P.; John-Williams, L.S.; Yeager, R.L.; Woodard, S.M.; Otto, V.; Castellino, S.; Demby, V.E. An Unexpected Synergist Role of P-Glycoprotein and Breast Cancer Resistance Protein on the Central Nervous System Penetration of the Tyrosine Kinase Inhibitor Lapatinib (N-3-Chloro-4-[(3-fluorobenzyl)oxy]phenyl-6-[5-([2-(methylsulfonyl)ethyl]aminomethyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab. Dispos., 2009, 37, 439-442.
[http://dx.doi.org/10.1124/dmd.108.024646] [PMID: 19056914 ]
[42]
Zhou, L.; Schmidt, K.; Nelson, F.R.; Zelesky, V.; Troutman, M.D.; Feng, B. The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab. Dispos., 2009, 37(5), 946-955.
[http://dx.doi.org/10.1124/dmd.108.024489] [PMID: 19225039 ]
[43]
Agarwal, S.; Sane, R.; Gallardo, J.L.; Ohlfest, J.R.; Elmquist, W.F. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J. Pharmacol. Exp. Ther., 2010, 334(1), 147-155.
[http://dx.doi.org/10.1124/jpet.110.167601] [PMID: 20421331 ]
[44]
Kodaira, H.; Kusuhara, H.; Fujita, T.; Ushiki, J.; Fuse, E.; Sugiyama, Y. Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J. Pharmacol. Exp. Ther., 2011, 339(3), 935-944.
[http://dx.doi.org/10.1124/jpet.111.180398] [PMID: 21934030 ]
[45]
Xiao, G.; Black, C.; Hetu, G.; Sands, E.; Wang, J.; Caputo, R.; Rohde, E.; Gan, L.S. Cerebrospinal fluid can be used as a surrogate to assess brain exposures of breast cancer resistance protein and P-glycoprotein substrates. Drug Metab. Dispos., 2012, 40(4), 779-787.
[http://dx.doi.org/10.1124/dmd.111.043703] [PMID: 22266779 ]
[46]
Mittapalli, R.K.; Vaidhyanathan, S.; Sane, R.; Elmquist, W.F. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J. Pharmacol. Exp. Ther., 2012, 342(1), 33-40.
[http://dx.doi.org/10.1124/jpet.112.192195] [PMID: 22454535 ]
[47]
Oberoi, R.K.; Mittapalli, R.K.; Elmquist, W.F. Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J. Pharmacol. Exp. Ther., 2013, 347(3), 755-764.
[http://dx.doi.org/10.1124/jpet.113.208959] [PMID: 24113148 ]
[48]
Fuchs, H.; Kishimoto, W.; Gansser, D.; Tanswell, P.; Ishiguro, N. Brain penetration of WEB 2086 (Apafant) and dantrolene in Mdr1a (P-glycoprotein) and Bcrp knockout rats. Drug Metab. Dispos., 2014, 42(10), 1761-1765.
[http://dx.doi.org/10.1124/dmd.114.058545] [PMID: 25053619 ]
[49]
Wijnholds, J.; Evers, R.; van Leusden, M.R.; Mol, C.A.; Zaman, G.J.; Mayer, U.; Beijnen, J.H.; van der Valk, M.; Krimpenfort, P.; Borst, P. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat. Med., 1997, 3(11), 1275-1279.
[http://dx.doi.org/10.1038/nm1197-1275] [PMID: 9359705 ]
[50]
Okamura, T.; Kikuchi, T.; Okada, M.; Toramatsu, C.; Fukushi, K.; Takei, M.; Irie, T. Noninvasive and quantitative assessment of the function of multidrug resistance-associated protein 1 in the living brain. J. Cereb. Blood Flow Metab., 2009, 29(3), 504-511.
[http://dx.doi.org/10.1038/jcbfm.2008.135] [PMID: 18985052 ]
[51]
Wang, F.; Zhou, F.; Kruh, G.D.; Gallo, J.M. Influence of blood-brain barrier efflux pumps on the distribution of vincristine in brain and brain tumors. Neuro-oncol., 2010, 12(10), 1043-1049.
[http://dx.doi.org/10.1093/neuonc/noq056] [PMID: 20501632 ]
[52]
Galante, E.; Okamura, T.; Sander, K.; Kikuchi, T.; Okada, M.; Zhang, M.R.; Robson, M.; Badar, A.; Lythgoe, M.; Koepp, M.; Årstad, E. Development of purine-derived 18F-labeled pro-drug tracers for imaging of MRP1 activity with PET. J. Med. Chem., 2014, 57(3), 1023-1032.
[http://dx.doi.org/10.1021/jm401764a] [PMID: 24456310 ]
[53]
Wijnholds, J.; deLange, E.C.; Scheffer, G.L.; van den Berg, D.J.; Mol, C.A.; van der Valk, M.; Schinkel, A.H.; Scheper, R.J.; Breimer, D.D.; Borst, P. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J. Clin. Invest., 2000, 105(3), 279-285.
[http://dx.doi.org/10.1172/JCI8267] [PMID: 10675353]
[54]
Leggas, M.; Adachi, M.; Scheffer, G.L.; Sun, D.; Wielinga, P.; Du, G.; Mercer, K.E.; Zhuang, Y.; Panetta, J.C.; Johnston, B.; Scheper, R.J.; Stewart, C.F.; Schuetz, J.D. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol. Cell. Biol., 2004, 24(17), 7612-7621.
[http://dx.doi.org/10.1128/MCB.24.17.7612-7621.2004] [PMID: 15314169 ]
[55]
Imaoka, T.; Kusuhara, H.; Adachi, M.; Schuetz, J.D.; Takeuchi, K.; Sugiyama, Y. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol. Pharmacol., 2007, 71(2), 619-627.
[http://dx.doi.org/10.1124/mol.106.028233] [PMID: 17110501]
[56]
Ose, A.; Ito, M.; Kusuhara, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M.; Hosokawa, M.; Schuetz, J.D.; Sugiyama, Y. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab. Dispos., 2009, 37(2), 315-321.
[http://dx.doi.org/10.1124/dmd.108.024018] [PMID: 19029202 ]
[57]
Keep, R.F.; Smith, D.E. Choroid plexus transport: gene deletion studies. Fluids Barriers CNS, 2011, 8(1), 26-35.
[http://dx.doi.org/10.1186/2045-8118-8-26] [PMID: 22053861]
[58]
Sweet, D.H.; Miller, D.S.; Pritchard, J.B.; Fujiwara, Y.; Beier, D.R.; Nigam, S.K. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J. Biol. Chem., 2002, 277(30), 26934-26943.
[http://dx.doi.org/10.1074/jbc.M203803200] [PMID: 12011098]
[59]
Miyajima, M.; Kusuhara, H.; Fujishima, M.; Adachi, Y.; Sugiyama, Y. Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood-brain barrier in mice. Drug Metab. Dispos., 2011, 39(5), 814-819.
[http://dx.doi.org/10.1124/dmd.110.036863] [PMID: 21325432 ]
[60]
Kikuchi, T.; Okamura, T.; Wakizaka, H.; Okada, M.; Odaka, K.; Yui, J.; Tsuji, A.B.; Fukumura, T.; Zhang, M.R. OAT3-mediated extrusion of the 99mTc-ECD metabolite in the mouse brain. J. Cereb. Blood Flow Metab., 2014, 34(4), 585-588.
[http://dx.doi.org/10.1038/jcbfm.2014.20] [PMID: 24496177]
[61]
Nies, A.T.; Jedlitschky, G.; König, J.; Herold-Mende, C.; Steiner, H.H.; Schmitt, H.P.; Keppler, D. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience, 2004, 129(2), 349-360.
[http://dx.doi.org/10.1016/j.neuroscience.2004.07.051] [PMID: 15501592 ]
[62]
Shen, H.; Smith, D.E.; Keep, R.F.; Brosius, F.C., III Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain. Mol. Pharm., 2004, 1(4), 248-256.
[http://dx.doi.org/10.1021/mp049944b] [PMID: 15981584]
[63]
Daood, M.; Tsai, C.; Ahdab-Barmada, M.; Watchko, J.F. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics, 2008, 39(4), 211-218.
[http://dx.doi.org/10.1055/s-0028-1103272] [PMID: 19165709 ]
[64]
Gazzin, S.; Strazielle, N.; Schmitt, C.; Fevre-Montange, M.; Ostrow, J.D.; Tiribelli, C.; Ghersi-Egea, J.F. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J. Comp. Neurol., 2008, 510(5), 497-507.
[http://dx.doi.org/10.1002/cne.21808] [PMID: 18680196]
[65]
Roberts, L.M.; Black, D.S.; Raman, C.; Woodford, K.; Zhou, M.; Haggerty, J.E.; Yan, A.T.; Cwirla, S.E.; Grindstaff, K.K. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience, 2008, 155(2), 423-438.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.015] [PMID: 18619525]
[66]
Sharom, F.J. Multidrug Resistance Protein: P-glycoprotein. In: Drug Transporters, Molecular Characterization and Role in Drug Disposition; You, G.; Morris, M.E., Eds.; John Wiley & Sons Inc: New Jersey, 2007; pp. 223-262.
[67]
Cvetkovic, M. Leake, B.; Fromm, M.F.; Wilkinson, G.R.; Kim, R.B. OATP and Pglycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos., 1999, 27, 866-871.
[PMID: 10421612]
[68]
Polli, J.W.; Wring, S.A.; Humphreys, J.E.; Huang, L.; Morgan, J.B.; Webster, L.O.; Serabjit-Singh, C.S. Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther., 2001, 299(2), 620-628.
[PMID: 11602674]
[69]
Paul, A.J.; Tranquilli, W.J.; Seward, R.L.; Todd, K.S., Jr; DiPietro, J.A. Clinical observations in collies given ivermectin orally. Am. J. Vet. Res., 1987, 48(4), 684-685.
[PMID: 3592367]
[70]
Pulliam, J.D.; Seward, R.L.; Henry, R.T.; Steinberg, S.A. Investigating ivermectin toxicity in Collies. Vet. Med., 1985, 80, 33-40.
[71]
Nelson, O.L.; Carsten, E.; Bentjen, S.A.; Mealey, K.L. Ivermectin toxicity in an Australian Shepherd dog with the MDR1 mutation associated with ivermectin sensitivity in Collies. J. Vet. Intern. Med., 2003, 17(3), 354-356.
[http://dx.doi.org/10.1111/j.1939-1676.2003.tb02461.x] [PMID: 12774979]
[72]
Neff, M.W.; Robertson, K.R.; Wong, A.K.; Safra, N.; Broman, K.W.; Slatkin, M.; Mealey, K.L.; Pedersen, N.C. Breed distribution and history of canine mdr1-1Delta, a pharmacogenetic mutation that marks the emergence of breeds from the collie lineage. Proc. Natl. Acad. Sci. USA, 2004, 101(32), 11725-11730.
[http://dx.doi.org/10.1073/pnas.0402374101] [PMID: 15289602 ]
[73]
Kaddoumi, A.; Choi, S.U.; Kinman, L.; Whittington, D.; Tsai, C.C.; Ho, R.J.; Anderson, B.D.; Unadkat, J.D. Inhibition of P-glycoprotein activity at the primate blood-brain barrier increases the distribution of nelfinavir into the brain but not into the cerebrospinal fluid. Drug Metab. Dispos., 2007, 35(9), 1459-1462.
[http://dx.doi.org/10.1124/dmd.107.016220] [PMID: 17591677 ]
[74]
Bhatia, A.; Schäfer, H.J.; Hrycyna, C.A. Oligomerization of the human ABC transporter ABCG2: evaluation of the native protein and chimeric dimers. Biochemistry, 2005, 44(32), 10893-10904.
[http://dx.doi.org/10.1021/bi0503807] [PMID: 16086592 ]
[75]
Hirano, M.; Maeda, K.; Matsushima, S.; Nozaki, Y.; Kusuhara, H.; Sugiyama, Y. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol. Pharmacol., 2005, 68(3), 800-807.
[http://dx.doi.org/10.1124/mol.105.014019] [PMID: 15955871]
[76]
Huang, L.; Wang, Y.; Grimm, S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab. Dispos., 2006, 34(5), 738-742.
[http://dx.doi.org/10.1124/dmd.105.007534] [PMID: 16415124 ]
[77]
Kitamura, S.; Maeda, K.; Wang, Y.; Sugiyama, Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab. Dispos., 2008, 36(10), 2014-2023.
[http://dx.doi.org/10.1124/dmd.108.021410] [PMID: 18617601]
[78]
Schuetz, J.D.; Connelly, M.C.; Sun, D.; Paibir, S.G.; Flynn, P.M.; Srinivas, R.V.; Kumar, A.; Fridland, A. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat. Med., 1999, 5(9), 1048-1051.
[http://dx.doi.org/10.1038/12487] [PMID: 10470083 ]
[79]
Yamada, A.; Maeda, K.; Kamiyama, E.; Sugiyama, D.; Kondo, T.; Shiroyanagi, Y.; Nakazawa, H.; Okano, T.; Adachi, M.; Schuetz, J.D.; Adachi, Y.; Hu, Z.; Kusuhara, H.; Sugiyama, Y. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab. Dispos., 2007, 35(12), 2166-2176.
[http://dx.doi.org/10.1124/dmd.107.017459] [PMID: 17823233]
[80]
Akanuma, S.; Uchida, Y.; Ohtsuki, S.; Kamiie, J.; Tachikawa, M.; Terasaki, T.; Hosoya, K. Molecular-weight-dependent, anionic-substrate-preferential transport of β-lactam antibiotics via multidrug resistance-associated protein 4. Drug Metab. Pharmacokinet., 2011, 26(6), 602-611.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-063] [PMID: 21897051 ]
[81]
Wittgen, H.G.; van den Heuvel, J.J.; Krieger, E.; Schaftenaar, G.; Russel, F.G.; Koenderink, J.B. Phenylalanine 368 of multidrug resistance-associated protein 4 (MRP4/ABCC4) plays a crucial role in substrate-specific transport activity. Biochem. Pharmacol., 2012, 84(3), 366-373.
[http://dx.doi.org/10.1016/j.bcp.2012.04.012] [PMID: 22542979]
[82]
Poller, B.; Wagenaar, E.; Tang, S.C.; Schinkel, A.H. Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol. Pharm., 2011, 8(2), 571-582.
[http://dx.doi.org/10.1021/mp1003898] [PMID: 21309545]
[83]
Cundy, K.C.; Sue, I.L.; Visor, G.C.; Marshburn, J.; Nakamura, C.; Lee, W.A.; Shaw, J.P. Oral formulations of adefovir dipivoxil: in vitro dissolution and in vivo bioavailability in dogs. J. Pharm. Sci., 1997, 86(12), 1334-1338.
[http://dx.doi.org/10.1021/js970264s] [PMID: 9423141]
[84]
Syvänen, S.; Lindhe, O.; Palner, M.; Kornum, B.R.; Rahman, O.; Långström, B.; Knudsen, G.M.; Hammarlund-Udenaes, M. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab. Dispos., 2009, 37(3), 635-643.
[http://dx.doi.org/10.1124/dmd.108.024745] [PMID: 19047468]
[85]
Feng, B.; Mills, J.B.; Davidson, R.E.; Mireles, R.J.; Janiszewski, J.S.; Troutman, M.D.; de Morais, S.M. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab. Dispos., 2008, 36(2), 268-275.
[http://dx.doi.org/10.1124/dmd.107.017434] [PMID: 17962372]
[86]
Takeuchi, T.; Yoshitomi, S.; Higuchi, T.; Ikemoto, K.; Niwa, S.; Ebihara, T.; Katoh, M.; Yokoi, T.; Asahi, S. Establishment and characterization of the transformants stably-expressing MDR1 derived from various animal species in LLC-PK1. Pharm. Res., 2006, 23(7), 1460-1472.
[http://dx.doi.org/10.1007/s11095-006-0285-7] [PMID: 16779700 ]
[87]
Bakhsheshian, J.; Hall, M.D.; Robey, R.W.; Herrmann, M.A.; Chen, J.Q.; Bates, S.E.; Gottesman, M.M. Overlapping substrate and inhibitor specificity of human and murine ABCG2. Drug Metab. Dispos., 2013, 41(10), 1805-1812.
[http://dx.doi.org/10.1124/dmd.113.053140] [PMID: 23868912]
[88]
Doran, A.C.; Osgood, S.M.; Mancuso, J.Y.; Shaffer, C.L. An evaluation of using rat-derived single-dose neuropharmacokinetic parameters to project accurately large animal unbound brain drug concentrations. Drug Metab. Dispos., 2012, 40(11), 2162-2173.
[http://dx.doi.org/10.1124/dmd.112.046391] [PMID: 22899853 ]
[89]
Uchida, Y.; Ohtsuki, S.; Kamiie, J.; Terasaki, T. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J. Pharmacol. Exp. Ther., 2011, 339(2), 579-588.
[http://dx.doi.org/10.1124/jpet.111.184200] [PMID: 21828264]
[90]
Uchida, Y.; Wakayama, K.; Ohtsuki, S.; Chiba, M.; Ohe, T.; Ishii, Y.; Terasaki, T. Blood-brain barrier pharmacoproteomics-based reconstruction of the in vivo brain distribution of P-glycoprotein substrates in cynomolgus monkeys. J. Pharmacol. Exp. Ther., 2014, 350(3), 578-588.
[http://dx.doi.org/10.1124/jpet.114.214536] [PMID: 24947467 ]
[91]
Choo, E.F.; Leake, B.; Wandel, C.; Imamura, H.; Wood, A.J.; Wilkinson, G.R.; Kim, R.B. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab. Dispos., 2000, 28(6), 655-660.
[PMID: 10820137 ]
[92]
Sasongko, L.; Link, J.M.; Muzi, M.; Mankoff, D.A.; Yang, X.; Collier, A.C.; Shoner, S.C.; Unadkat, J.D. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin. Pharmacol. Ther., 2005, 77(6), 503-514.
[http://dx.doi.org/10.1016/j.clpt.2005.01.022] [PMID: 15961982 ]
[93]
Seneca, N.; Zoghbi, S.S.; Liow, J.S.; Kreisl, W.; Herscovitch, P.; Jenko, K.; Gladding, R.L.; Taku, A.; Pike, V.W.; Innis, R.B. Human brain imaging and radiation dosimetry of 11C-N-desmethyl-loperamide, a PET radiotracer to measure the function of P-glycoprotein. J. Nucl. Med., 2009, 50(5), 807-813.
[http://dx.doi.org/10.2967/jnumed.108.058453] [PMID: 19372478 ]
[94]
Kreisl, W.C.; Liow, J.S.; Kimura, N.; Seneca, N.; Zoghbi, S.S.; Morse, C.L.; Herscovitch, P.; Pike, V.W.; Innis, R.B. P-glycoprotein function at the blood-brain barrier in humans can be quantified with the substrate radiotracer 11C-N-desmethyl-loperamide. J. Nucl. Med., 2010, 51(4), 559-566.
[http://dx.doi.org/10.2967/jnumed.109.070151] [PMID: 20237038 ]
[95]
Liu, X.; Smith, B.J.; Chen, C.; Callegari, E.; Becker, S.L.; Chen, X.; Cianfrogna, J.; Doran, A.C.; Doran, S.D.; Gibbs, J.P.; Hosea, N.; Liu, J.; Nelson, F.R.; Szewc, M.A.; Van Deusen, J. Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab. Dispos., 2006, 34(9), 1443-1447.
[http://dx.doi.org/10.1124/dmd.105.008201] [PMID: 16760229]
[96]
Fridén, M.; Winiwarter, S.; Jerndal, G.; Bengtsson, O.; Wan, H.; Bredberg, U.; Hammarlund-Udenaes, M.; Antonsson, M. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J. Med. Chem., 2009, 52(20), 6233-6243.
[http://dx.doi.org/10.1021/jm901036q] [PMID: 19764786]
[97]
Wagdy, A.M.; Kim, J.C.; Kim, G.E.; Wu, H.; El-Shourbagy, T. Effect of sample collection tubing type used in a clinical study on quantitation of pharmaceutical compounds in CSF by LC-MS/MS. Bioanalysis, 2011, 3(2), 167-179.
[http://dx.doi.org/10.4155/bio.10.185] [PMID: 21250846 ]
[98]
Kadar, E.P.; Su, Y.; Zhang, Y.; Tweed, J.; Wujcik, C.E. Evaluation of the relationship between a pharmaceutical compound’s distribution coefficient, log D and adsorption loss to polypropylene in urine and CSF. Bioanalysis, 2010, 2(4), 755-767.
[http://dx.doi.org/10.4155/bio.10.1] [PMID: 21083273]
[99]
Blaney, S.M.; Daniel, M.J.; Harker, A.J.; Godwin, K.; Balis, F.M. Pharmacokinetics of lamivudine and BCH-189 in plasma and cerebrospinal fluid of nonhuman primates. Antimicrob. Agents Chemother., 1995, 39(12), 2779-2782.
[http://dx.doi.org/10.1128/AAC.39.12.2779] [PMID: 8593019]
[100]
Arendt, R.M.; Greenblatt, D.J.; deJong, R.H.; Bonin, J.D.; Abernethy, D.R.; Ehrenberg, B.L.; Giles, H.G.; Sellers, E.M.; Shader, R.I. In vitro correlates of benzodiazepine cerebrospinal fluid uptake, pharmacodynamic action and peripheral distribution. J. Pharmacol. Exp. Ther., 1983, 227(1), 98-106.
[PMID: 6137558]
[101]
Nau, R.; Prange, H.W.; Kinzig, M.; Frank, A.; Dressel, A.; Scholz, P.; Kolenda, H.; Sörgel, F. Cerebrospinal fluid ceftazidime kinetics in patients with external ventriculostomies. Antimicrob. Agents Chemother., 1996, 40(3), 763-766.
[http://dx.doi.org/10.1128/AAC.40.3.763] [PMID: 8851607]
[102]
Haas, D.W.; Stone, J.; Clough, L.A.; Johnson, B.; Spearman, P.; Harris, V.L.; Nicotera, J.; Johnson, R.H.; Raffanti, S.; Zhong, L.; Bergqwist, P.; Chamberlin, S.; Hoagland, V.; Ju, W.D. Steady-state pharmacokinetics of indinavir in cerebrospinal fluid and plasma among adults with human immunodeficiency virus type 1 infection. Clin. Pharmacol. Ther., 2000, 68(4), 367-374.
[http://dx.doi.org/10.1067/mcp.2000.109391] [PMID: 11061576 ]
[103]
Rao, V.V.; Dahlheimer, J.L.; Bardgett, M.E.; Snyder, A.Z.; Finch, R.A.; Sartorelli, A.C.; Piwnica-Worms, D. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 3900-3905.
[http://dx.doi.org/10.1073/pnas.96.7.3900] [PMID: 10097135]
[104]
Reichel, V.; Burghard, S.; John, I.; Huber, O. P-glycoprotein and breast cancer resistance protein expression and function at the blood-brain barrier and blood-cerebrospinal fluid barrier (choroid plexus) in streptozotocin-induced diabetes in rats. Brain Res., 2011, 1370, 238-245.
[http://dx.doi.org/10.1016/j.brainres.2010.11.012] [PMID: 21075088]
[105]
Shen, J.; Carcaboso, A.M.; Hubbard, K.E.; Tagen, M.; Wynn, H.G.; Panetta, J.C.; Waters, C.M.; Elmeliegy, M.A.; Stewart, C.F. Compartment-specific roles of ATP-binding cassette transporters define differential topotecan distribution in brain parenchyma and cerebrospinal fluid. Cancer Res., 2009, 69(14), 5885-5892.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0700] [PMID: 19567673]
[106]
Tsuchiya, K.; Hayashida, T.; Hamada, A.; Kato, S.; Oka, S.; Gatanaga, H. Low raltegravir concentration in cerebrospinal fluid in patients with ABCG2 genetic variants. J. Acquir. Immune Defic. Syndr., 2014, 66(5), 484-486.
[http://dx.doi.org/10.1097/QAI.0000000000000222] [PMID: 24872134]
[107]
Ohe, T.; Sato, M.; Tanaka, S.; Fujino, N.; Hata, M.; Shibata, Y.; Kanatani, A.; Fukami, T.; Yamazaki, M.; Chiba, M.; Ishii, Y. Effect of P-glycoprotein-mediated efflux on cerebrospinal fluid/plasma concentration ratio. Drug Metab. Dispos., 2003, 31(10), 1251-1254.
[http://dx.doi.org/10.1124/dmd.31.10.1251] [PMID: 12975334]
[108]
Tang, C.; Kuo, Y.; Pudvah, N.T.; Ellis, J.D.; Michener, M.S.; Egbertson, M.; Graham, S.L.; Cook, J.J.; Hochman, J.H.; Prueksaritanont, T. Effect of P-glycoprotein-mediated efflux on cerebrospinal fluid concentrations in rhesus monkeys. Biochem. Pharmacol., 2009, 78(6), 642-647.
[http://dx.doi.org/10.1016/j.bcp.2009.05.026] [PMID: 19481060]
[109]
Maurer, T.S.; Debartolo, D.B.; Tess, D.A.; Scott, D.O. Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab. Dispos., 2005, 33(1), 175-181.
[http://dx.doi.org/10.1124/dmd.104.001222] [PMID: 15502010]
[110]
Stain-Texier, F.; Boschi, G.; Sandouk, P.; Scherrmann, J.M. Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability. Br. J. Pharmacol., 1999, 128(4), 917-924.
[http://dx.doi.org/10.1038/sj.bjp.0702873] [PMID: 10556926]
[111]
Mensch, J.; Oyarzabal, J.; Mackie, C.; Augustijns, P. In vivo, in vitro and in silico methods for small molecule transfer across the BBB. J. Pharm. Sci., 2009, 98(12), 4429-4468.
[http://dx.doi.org/10.1002/jps.21745] [PMID: 19408294]
[112]
Klecker, R.W., Jr; Collins, J.M.; Yarchoan, R.; Thomas, R.; Jenkins, J.F.; Broder, S.; Myers, C.E. Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythymidine: a novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin. Pharmacol. Ther., 1987, 41(4), 407-412.
[http://dx.doi.org/10.1038/clpt.1987.49] [PMID: 3549120]
[113]
Giri, N.; Shaik, N.; Pan, G.; Terasaki, T.; Mukai, C.; Kitagaki, S.; Miyakoshi, N.; Elmquist, W.F. Investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) on pharmacokinetics and central nervous system penetration of abacavir and zidovudine in the mouse. Drug Metab. Dispos., 2008, 36(8), 1476-1484.
[http://dx.doi.org/10.1124/dmd.108.020974] [PMID: 18443033]
[114]
Bauer, M.; Zeitlinger, M.; Karch, R.; Matzneller, P.; Stanek, J.; Jäger, W.; Böhmdorfer, M.; Wadsak, W.; Mitterhauser, M.; Bankstahl, J.P.; Löscher, W.; Koepp, M.; Kuntner, C.; Müller, M.; Langer, O. Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data. Clin. Pharmacol. Ther., 2012, 91(2), 227-233.
[http://dx.doi.org/10.1038/clpt.2011.217] [PMID: 22166851]
[115]
Loryan, I.; Fridén, M.; Hammarlund-Udenaes, M. The brain slice method for studying drug distribution in the CNS. Fluids Barriers CNS, 2013, 10(1), 6.
[http://dx.doi.org/10.1186/2045-8118-10-6] [PMID: 23336814]
[116]
Fridén, M.; Bergström, F.; Wan, H.; Rehngren, M.; Ahlin, G.; Hammarlund-Udenaes, M.; Bredberg, U. Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab. Dispos., 2011, 39(3), 353-362.
[http://dx.doi.org/10.1124/dmd.110.035998] [PMID: 21149540]
[117]
Di, L.; Umland, J.P.; Chang, G.; Huang, Y.; Lin, Z.; Scott, D.O.; Troutman, M.D.; Liston, T.E. Species independence in brain tissue binding using brain homogenates. Drug Metab. Dispos., 2011, 39(7), 1270-1277.
[http://dx.doi.org/10.1124/dmd.111.038778] [PMID: 21474681]
[118]
Kikuchi, R.; de Morais, S.M.; Kalvass, J.C. In vitro P-glycoprotein efflux ratio can predict the in vivo brain penetration regardless of biopharmaceutics drug disposition classification system class. Drug Metab. Dispos., 2013, 41(12), 2012-2017.
[http://dx.doi.org/10.1124/dmd.113.053868] [PMID: 24009309]
[119]
Mahar Doan, K.M.; Humphreys, J.E.; Webster, L.O.; Wring, S.A.; Shampine, L.J.; Serabjit-Singh, C.J.; Adkison, K.K.; Polli, J.W. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J. Pharmacol. Exp. Ther., 2002, 303(3), 1029-1037.
[http://dx.doi.org/10.1124/jpet.102.039255] [PMID: 12438524]
[120]
Bentz, J.; O’Connor, M.P.; Bednarczyk, D.; Coleman, J.; Lee, C.; Palm, J.; Pak, Y.A.; Perloff, E.S.; Reyner, E.; Balimane, P.; Brannstrom, M.; Chu, X.; Funk, C.; Guo, A.; Hanna, I.; Heredi-Szabo, K.; Hillgren, K.; Li, L.; Hollnack-Pusch, E.; Jamei, M.; Lin, X.; Mason, A.K.; Neuhoff, S.; Patel, A.; Podilla, L.; Plise, E.; Rajaraman, G.; Salphati, L.; Sands, E.; Taub, M.E. Taur. J-S.; Weitz, D.; Wortelboer, H.M.; Xia, C.Q.; Xiao, G.; Yabut, J.; Yamagata, T.; Zhang, L.; Ellens, H. Variability in P-glycoprotein inhibitory potency (IC50) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. Drug Metab. Dispos., 2013, 41, 1347-1366.
[http://dx.doi.org/10.1124/dmd.112.050500] [PMID: 23620485]
[121]
Arakawa, R.; Okumura, M.; Ito, H.; Takano, A.; Takahashi, H.; Takano, H.; Maeda, J.; Okubo, Y.; Suhara, T. Positron emission tomography measurement of dopamine D2 receptor occupancy in the pituitary and cerebral cortex: relation to antipsychotic-induced hyperprolactinemia. J. Clin. Psychiatry, 2010, 71(9), 1131-1137.
[http://dx.doi.org/10.4088/JCP.08m04307yel] [PMID: 20361897]
[122]
Takano, H.; Ito, S.; Zhang, X.; Ito, H.; Zhang, M.R.; Suzuki, H.; Maeda, K.; Kusuhara, H.; Suhara, T.; Sugiyama, Y. Possible Role of Organic Cation Transporters in the Distribution of [11C]Sulpiride, a Dopamine D2 Receptor Antagonist. J. Pharm. Sci., 2017, 106(9), 2558-2565.
[http://dx.doi.org/10.1016/j.xphs.2017.05.006] [PMID: 28499878]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 2
Year: 2019
Page: [78 - 94]
Pages: 17
DOI: 10.2174/1872312813666190311125652

Article Metrics

PDF: 40
HTML: 6