Significance and Mechanisms of P-glycoprotein in Central Nervous System Diseases

Author(s): Liangliang Huang , Binbin Li , Xiang Li , Ge Liu , Rui Liu , Jia Guo , Baohui Xu , Yunman Li* , Weirong Fang* .

Journal Name: Current Drug Targets

Volume 20 , Issue 11 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

P-glycoprotein (P-gp) is a member of ATP-Binding Cassette (ABC) transporter family. Because of its characteristic luminal surface location, high transport potency and structural specificity, Pgp is regarded as a selective gatekeeper of the Blood Brain Barrier (BBB) to prevent the entry of toxins or unwanted substances into the brain. In recent years, increasing evidence has shown that P-gp is involved in the immune inflammatory response in the Central Nervous System (CNS) disorders by regulating microglia activation, and mediating immune cell migration. Furthermore, Glucocorticoid Receptor (GR) may play a crucial role in P-gp-mediated microglia activation and immune cell migration via GR-mediated mRNA decay. In this article, we will review P-gp structure, distribution, function, regulatory mechanisms, inhibitors and effects of P-gp in the pathogenesis of several CNS diseases and will discuss the role of P-gp in microglia activation, immune cell migration and the relationship with cytokine secretion.

Keywords: P-glycoprotein, central nervous system, immune inflammation, glucocorticoid receptor, microglia, chemokine (C-C motif) ligand 2.

[1]
Lv J, Hu W, Yang Z, et al. Focusing on claudin-5: A promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol 2018; 161: 79-96.
[http://dx.doi.org/10.1016/j.pneurobio.2017.12.00129217457]
[2]
Hartz AMS, Bauer B. ABC transporters in the CNS - an inventory. Curr Pharm Biotechnol 2011; 12(4)
[3]
Chen Z, Shi T, Zhang L, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett 2016; 370(1): 153-64.
[4]
Li YS, Zhao DS, Liu XY, et al. Synthesis and biological evaluation of 2,5-disubstituted furan derivatives as P-glycoprotein inhibitors for Doxorubicin resistance in MCF-7/ADR cell. Eur J Med Chem 2018; 151: 546-6.
[5]
Tatke A, Janga KY, Avula B, et al. P-glycoprotein restricts ocular penetration of loperamide across the blood-ocular barriers: a comparative study in Mdr1a knock-out and wild type sprague dawley rats. AAPS PharmSciTech 2018; 19(4): 1662-71.
[http://dx.doi.org/10.1208/s12249-018-0979-229520587]
[6]
CK F. S A. Role of P-glycoprotein in deoxynivalenol-mediated in vitro toxicity.%A Ivanova L. Toxicology Letters 2018; 284: 21-8.
[7]
Yang T1, Ferrill L1, Gallant L, et al. Verapamil and riluzole cocktail liposomes overcome pharmacoresistance by inhibiting P-glycoprotein in brain endothelial and astrocyte cells: A potent approach to treat amyotrophic lateral sclerosis. Eur J Pharm Sci 2018; 30(120): 30-9.
[8]
Wang W, Bodles-Brakhop AM, Barger SW. A Role for P-Glycoprotein in Clearance of Alzheimer Amyloid β -Peptide from the Brain. Curr Alzheimer Res 2016; 13(6): 615-20.
[http://dx.doi.org/10.2174/156720501366616031415101226971931]
[9]
Lysophosphatidic acid and amitriptyline signal through LPA1R to reduce P-glycoprotein transport at the blood-brain barrier.%A Banks DB. J Cereb Blood Flow Metab (Nihongoban) 2018; 38(5): 857-68.
[http://dx.doi.org/10.1177/0271678X17705786]
[10]
Jones KA, Maltby S, Plank MW, et al. Peripheral immune cells infiltrate into sites of secondary neurodegeneration after ischemic stroke. Brain Behav Immun 2018; 67: 299-307.
[PMID: 28911981]
[11]
Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 2011; 1812(2): 252-64.
[http://dx.doi.org/10.1016/j.bbadis.2010.06.01720619340]
[12]
Subileau EA, Rezaie P, Davies HA, et al. Expression of chemokines and their receptors by human brain endothelium: implications for multiple sclerosis. J Neuropathol Exp Neurol 2009; 68(3): 227-40.
[http://dx.doi.org/10.1097/NEN.0b013e318197eca719225413]
[13]
Zarruk JG, Greenhalgh AD, David S. Microglia and macrophages differ in their inflammatory profile after permanent brain ischemia. Experimental Neurology 2017; 301((Pt B)): S0014488617302169
[14]
Swanson A, Wolf T, Sitzmann A, Willette AA, et al. Neuroinflammation in Alzheimer’s disease: Pleiotropic roles for cytokines and neuronal pentraxins. Behav Brain Res 2018; 16(347): 49-56.
[15]
Kania KD, Wijesuriya HC, Hladky SB, Barrand MA. Beta amyloid effects on expression of multidrug efflux transporters in brain endothelial cells. Brain Res 2011; 1418(1418): 1-11.
[http://dx.doi.org/10.1016/j.brainres.2011.08.04421920506]
[16]
van de Ven R, Scheffer GL, Scheper RJ, de Gruijl TD. The ABC of dendritic cell development and function. Trends Immunol 2009; 30(9): 421-9.
[http://dx.doi.org/10.1016/j.it.2009.06.00419699682]
[17]
Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 2006; 25(4): 231-59.
[http://dx.doi.org/10.1080/1091581060074602316815813]
[18]
Frank MH, Denton MD, Alexander SI, et al. Specific MDR1 P-glycoprotein blockade inhibits human alloimmune T cell activation in vitro. J Immunol 2001; 166(4): 2451-9.
[19]
Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 1998; 139(4): 1789-93.
[http://dx.doi.org/10.1210/endo.139.4.59179528963]
[20]
Kooij G, Backer R, Koning JJ, et al. P-glycoprotein acts as an immunomodulator during neuroinflammation. PLoS One 2009; 4(12): e8212.
[http://dx.doi.org/10.1371/journal.pone.000821219997559]
[21]
Kooij G, Mizee MR, van Horssen J, et al. Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain 2011; 134(Pt 2): 555-70.
[http://dx.doi.org/10.1093/brain/awq33021183485]
[22]
Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 2004; 61(6): 682-99.
[http://dx.doi.org/10.1007/s00018-003-3336-915052411]
[23]
Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008; 38(7-8): 802-32.
[http://dx.doi.org/10.1080/0049825070186788918668431]
[24]
Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005; 2(1): 86-98.
[http://dx.doi.org/10.1602/neurorx.2.1.8615717060]
[25]
Hennessy M, Spiers JP. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol Res 2007; 55(1): 1-15.
[http://dx.doi.org/10.1016/j.phrs.2006.10.00717095241]
[26]
Zuben E. SaunaIn-Wha K, Suresh VA. Genomics and the mechanism of P-glycoprotein (ABCB1). J Bioenergetics Biomembranes 2007; 5(6): 484-7.
[27]
Beis K. Structural basis for the mechanism of ABC transporters. Biochem Soc Trans 2015; 43(5): 889-93.
[http://dx.doi.org/10.1042/BST2015004726517899]
[28]
Locher KP, Borths E. ABC transporter architecture and mechanism: implications from the crystal structures of BtuCD and BtuF. FEBS Lett 2004; 564(3): 264-8.
[http://dx.doi.org/10.1016/S0014-5793(04)00289-315111107]
[29]
Locher KP, Lee AT, Rees DC. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 2002; 296(5570): 1091-8.
[http://dx.doi.org/10.1126/science.107114212004122]
[30]
Li Y1, Yuan H, Yang K, et al. The structure and functions of P-glycoprotein. Curr Med Chem 2010; 17(8): 786-800.
[31]
Germann UA, Pastan I, Gottesman MM. P-glycoproteins: mediators of multidrug resistance. Semin Cell Biol 1993; 4(1): 63-76.
[http://dx.doi.org/10.1006/scel.1993.10088095827]
[32]
Linton KJ. Structure and function of ABC transporters. Physiology (Bethesda) 2007; 22(2): 122-30.
[http://dx.doi.org/10.1152/physiol.00046.200617420303]
[33]
Blokzijl H, Vander Borght S, Bok L, et al. Decreased P-glycoprotein (P-gp/MDR1) expression in inflamed human intestinal epithelium is independent of PXR protein levels. Inflamm Bowel Dis 2007; 13(6): 710-20.
[34]
L, L., W. Y, X. Z. Vinegar-baked Radix Bupleuri modulates the cell membrane constituents and inhibits the P-gp activity in rat hepatocytes.%A Zhao R. BMC complementary and alternative medicine 2014; 14: 357.
[35]
Peeters K, Wilmer MJ, Schoeber JP, et al. Role of p-glycoprotein expression and function in cystinotic renal proximal tubular cells. Pharmaceutics 2011; 3(4): 782-92.
[http://dx.doi.org/10.3390/pharmaceutics304078224309308]
[36]
Hoshi Y, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Actin filament-associated protein 1 (AFAP-1) is a key mediator in inflammatory signaling-induced rapid attenuation of intrinsic P-gp function in human brain capillary endothelial cells. J Neurochem 2017; 141(2): 247-62.
[37]
Su L, Cheng CY, Mruk DD. CY Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier. Int J Biochem Cell Biol 2009; 41(12): 2578-87.
[http://dx.doi.org/10.1016/j.biocel.2009.08.01519720156]
[38]
Miller DS. Regulation of ABC transporters at the blood-brain barrier. Clin Pharmacol Ther 2015; 97(4): 395-403.
[http://dx.doi.org/10.1002/cpt.6425670036]
[39]
Qosa H, Lichter J, Sarlo M, et al. Astrocytes drive upregulation of the multidrug resistance transporter ABCB1 (P-Glycoprotein) in endothelial cells of the blood-brain barrier in mutant superoxide dismutase 1-linked amyotrophic lateral sclerosis. Glia 2016; 64(8): 1298-313.
[40]
Ronaldson PT, Bendayan R. HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol Pharmacol 2006; 70(3): 1087-98.
[http://dx.doi.org/10.1124/mol.106.02597316790532]
[41]
Ronaldson PT, Lee G, Dallas S, Bendayan R. Involvement of P-glycoprotein in the transport of saquinavir and indinavir in rat brain microvessel endothelial and microglia cell lines. Pharm Res 2004; 21(5): 811-8.
[http://dx.doi.org/10.1023/B:PHAM.0000026433.27773.4715180339]
[42]
Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005; 204(3): 216-37.
[http://dx.doi.org/10.1016/j.taap.2004.10.01215845415]
[43]
Shen S, Zhang W. ABC transporters and drug efflux at the blood-brain barrier. Rev Neurosci 2010; 21(1): 29-53.
[http://dx.doi.org/10.1515/REVNEURO.2010.21.1.2920458886]
[44]
Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol 2013; 61(25): 2495-502.
[http://dx.doi.org/10.1016/j.jacc.2013.02.05823563132]
[45]
Li L, Yao QQ, Xu SY, et al. Cyclosporin A affects the bioavailability of ginkgolic acids via inhibition of P-gp and BCRP. Eur J Pharm Biopharm 2014; 88(3): 759-67.
[http://dx.doi.org/10.1016/j.ejpb.2014.06.01224980806]
[46]
Goard CA, Mather RG, Vinepal B, et al. Differential interactions between statins and P-glycoprotein: implications for exploiting statins as anticancer agents. Int J Cancer 2010; 127(12): 2936-48.
[http://dx.doi.org/10.1002/ijc.2529521351272]
[47]
Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2012; 64(1): 138-53.
[http://dx.doi.org/10.1016/j.addr.2012.09.02712535572]
[48]
Li W, Zhang H, Assaraf YG, et al. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27: 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.00127449595]
[49]
Yangmei X, Yiye S, Xiaolin D, Ming W, Yinghui C. MicroRNA-298 reverses multidrug resistance to antiepileptic drugs by suppressing MDR1/P-gp expression in vitro. Front Neurosci 2018; 12: 602.
[50]
Zhang Z, Xu K, Bi Y, et al. Low intensity ultrasound promotes the sensitivity of rat brain glioma to Doxorubicin by down-regulating the expressions of p-glucoprotein and multidrug resistance protein 1 in vitro and in vivo. PLoS One 2013; 8(8): e70685.
[51]
Guo Z, Zhu J, Zhao L, Luo Q, Jin X. Expression and clinical significance of multidrug resistance proteins in brain tumors. J Exp Clin Cancer Res 2010; 5(29): 122.
[52]
Mohamed LA, Keller JN, Kaddoumi A. Role of P-glycoprotein in mediating rivastigmine effect on amyloid-β brain load and related pathology in Alzheimer’s disease mouse model. Biochim Biophys Acta 2016; 1862(4): 778-87.
[http://dx.doi.org/10.1016/j.bbadis.2016.01.01326780497]
[53]
van de Ven R, Oerlemans R, van der Heijden JW, et al. ABC drug transporters and immunity: novel therapeutic targets in autoimmunity and cancer. J Leukoc Biol 2009; 86(5): 1075-87.
[http://dx.doi.org/10.1189/jlb.030914719745159]
[54]
Torres-Vergara P, Penny J. Pro-inflammatory and anti-inflammatory compounds exert similar effects on P-glycoprotein in blood-brain barrier endothelial cells. J Pharm Pharmacol 2018; 70(6): 713-22. [Pt B [http://10.1111/jphp.1289329492971
[55]
Dohgu S, Yamauchi A, Takata F, et al. Transforming growth factor-β1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell Mol Neurobiol 2004; 24(3): 491-7.
[http://dx.doi.org/10.1023/B:CEMN.0000022776.47302.ce15206827]
[56]
Lee NY, Rieckmann P, Kang YS. The changes of P-glycoprotein activity by interferon-γ and tumor necrosis factor-α in primary and immortalized human brain microvascular endothelial cells. Biomol Ther (Seoul) 2012; 20(3): 293-8.
[http://dx.doi.org/10.4062/biomolther.2012.20.3.29324130926]
[57]
Chen T. Overcoming drug resistance by regulating nuclear receptors. Adv Drug Deliv Rev 2010; 62(13): 1257-64.
[http://dx.doi.org/10.1016/j.addr.2010.07.00820691230]
[58]
Chan GNY, Hoque MT, Cummins CL, Bendayan R. Regulation of P-glycoprotein by orphan nuclear receptors in human brain microvessel endothelial cells. J Neurochem 2011; 118(2): 163-75.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07288.x21517853]
[59]
Bauer B, Hartz AM, Fricker G, Miller DS. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol Pharmacol 2004; 66(3): 413-9.
[PMID: 15322232]
[60]
Yang X, Ren W, Shao Y, Chen Y. MiR-466b-1-3p regulates P-glycoprotein expression in rat cerebral microvascular endothelial cells. Neurosci Lett 2017; 645: 60-6.
[http://dx.doi.org/10.1016/j.neulet.2017.02.04428235604]
[61]
Jumnongprakhon P, Sivasinprasasn S, Govitrapong P, Tocharus C, Tocharus J. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells. Toxicol In Vitro 2017; 41: 42-8.
[http://dx.doi.org/10.1016/j.tiv.2017.02.01028223141]
[62]
Hong H, Lu Y, Ji ZN, Liu GQ. Up-regulation of P-glycoprotein expression by glutathione depletion-induced oxidative stress in rat brain microvessel endothelial cells. J Neurochem 2006; 98(5): 1465-73.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03993.x16923159]
[63]
Fan X, Chai L, Zhang H, et al. Borneol depresses P-glycoprotein function by a NF-κB signaling mediated mechanism in a blood brain barrier in vitro model. Int J Mol Sci 2015; 16(11): 27576-88.
[64]
Harati R, Benech H, Villégier AS, Mabondzo A. P-glycoprotein, breast cancer resistance protein, Organic Anion Transporter 3, and Transporting Peptide 1a4 during blood-brain barrier maturation: involvement of Wnt/β-catenin and endothelin-1 signaling. Mol Pharm 2013; 10(5): 1566-80.
[http://dx.doi.org/10.1021/mp300334r22998451]
[65]
van Vliet EA1, Zibell G, Pekcec A, et al. COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 2010; Feb 58(2): 404-12.
[66]
Wang RB, Kuo CL, Lien LL, Lien EJ. Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. J Clin Pharm Ther 2003; 28(3): 203-28.
[http://dx.doi.org/10.1046/j.1365-2710.2003.00487.x12795780]
[67]
O’Brien FE, O’Connor RM, Clarke G, et al. P-glycoprotein inhibition increases the brain distribution and antidepressant-like activity of escitalopram in rodents. Neuropsychopharmacology 2013; 38(11): 2209-19.
[68]
Daenen S, van der Holt B, Verhoef GE, et al. Addition of cyclosporin A to the combination of mitoxantrone and etoposide to overcome resistance to chemotherapy in refractory or relapsing acute myeloid leukaemia: a randomised phase II trial from HOVON, the Dutch-Belgian Haemato-Oncology Working Group for adults. Leuk Res 2004; 28(10): 1057-67.
[69]
Pennock GD, Dalton WS, Roeske WR, et al. Systemic toxic effects associated with high-dose verapamil infusion and chemotherapy administration. J Natl Cancer Inst 1991; 83(2): 105-10.
[http://dx.doi.org/10.1093/jnci/83.2.1051988684]
[70]
List AF, Kopecky KJ, Willman CL, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001; 98(12): 3212-20.
[http://dx.doi.org/10.1182/blood.V98.12.321211719356]
[71]
Wilson WH, Jamis-Dow C, Bryant G, et al. Phase I and pharmacokinetic study of the multidrug resistance modulator dexverapamil with EPOCH chemotherapy. J Clin Oncol 1995; 13(8): 1985-94.
[http://dx.doi.org/10.1200/JCO.1995.13.8.19857636539]
[72]
Tidefelt U, Liliemark J, Gruber A, et al. P-Glycoprotein inhibitor valspodar (PSC 833) increases the intracellular concentrations of daunorubicin in vivo in patients with P-glycoprotein-positive acute myeloid leukemia. J Clin Oncol 2000; 18(9): 1837-44.
[http://dx.doi.org/10.1200/JCO.2000.18.9.183710784624]
[73]
Minderman H, O’Loughlin KL, Pendyala L, Baer MR. VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 2004; 10(5): 1826-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-0914-315014037]
[74]
Boesch D, Muller K, Pourtier-Manzanedo A, Loor F. Restoration of daunomycin retention in multidrug-resistant P388 cells by submicromolar concentrations of SDZ PSC 833, a nonimmunosuppressive cyclosporin derivative. Exp Cell Res 1991; 196(1): 26-32.
[75]
Twentyman PR, Bleehen NM. Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin [corrected Eur J Cancer 1991; 27(12): 1639-42.
[http://dx.doi.org/10.1016/0277-5379(91)90435-G1816768]
[76]
Bark H, Choi CH. PSC833, cyclosporine analogue, downregulates MDR1 expression by activating JNK/c-Jun/AP-1 and suppressing NF-kappaB. Cancer Chemother Pharmacol 2010; 65(6): 1131-6.
[http://dx.doi.org/10.1007/s00280-009-1121-719763573]
[77]
Echizen H, Brecht T, Niedergesäss S, Vogelgesang B, Eichelbaum M. The effect of dextro-, levo-, and racemic verapamil on atrioventricular conduction in humans. Am Heart J 1985; 109(2): 210-7.
[78]
Bissett D, Kerr DJ, Cassidy J, et al. Phase I and pharmacokinetic study of D-verapamil and doxorubicin. Br J Cancer 1991; 64(6): 1168-71.
[79]
Friedenberg WR, Rue M, Blood EA, et al. Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern Cooperative Oncology Group. Cancer 2006; 106(4): 830-8.
[http://dx.doi.org/10.1002/cncr.2166616419071]
[80]
Wandel C, Kim RB, Kajiji S, Guengerich P, Wilkinson GR, Wood AJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res 1999; 59(16): 3944-8.
[PMID: 10463589]
[81]
Li W, Zhang H, Assaraf YG, et al. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27: 14-29.
[82]
Lubelski J, van Merkerk R, Konings WN, Driessen AJ. Nucleotide-binding sites of the heterodimeric LmrCD ABC-multidrug transporter of Lactococcus lactis are asymmetric. Biochem 2006; 45(2): 648-56.
[83]
Loo TW, Clarke DM. Tariquidar inhibits P-glycoprotein drug efflux but activates ATPase activity by blocking transition to an open conformation. Biochem Pharmacol 2014; 92(4): 558-66.
[http://dx.doi.org/10.1016/j.bcp.2014.10.00625456855]
[84]
Leitner I, Nemeth J, Feurstein T, et al. The third-generation P-glycoprotein inhibitor tariquidar may overcome bacterial multidrug resistance by increasing intracellular drug concentration. J Antimicrob Chemother 2011; 66(4): 834-9.
[85]
Tang R, Faussat AM, Perrot JY, et al. Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML). BMC Cancer 2008; 13(8): 51.
[86]
Cripe LD, Uno H, Paietta EM, et al. Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood 2010; 116(20): 4077-85.
[http://dx.doi.org/10.1182/blood-2010-04-27726920716770]
[87]
Pusztai L, Wagner P, Ibrahim N, et al. Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 2005; 104(4): 682-91.
[88]
Weerasinghe P, Hallock S, Tang SC, Trump B, Liepins A. Sanguinarine overcomes P-glycoprotein-mediated multidrug-resistance via induction of apoptosis and oncosis in CEM-VLB 1000 cells. Exp Toxicol Pathol 2006; 58(1): 21-30.
[89]
Guo Y, Chen L, Sun C, Yu C. MicroRNA-500a promotes migration and invasion in hepatocellular carcinoma by activating the Wnt/β-catenin signaling pathway. Biomed Pharmacother 2017; 91: 13-20.
[90]
Steglich B, et al. Inhibition of P-glycoprotein by two artemisinin derivatives. Nat Prod Bioprospect 2012; 2(2): 59-64.
[http://dx.doi.org/10.1007/s13659-012-0006-3]
[91]
Shen X, Chen G, Zhu G, Fong WF. (+/-)-3′-O, 4′-O-dicynnamoyl-cis-khellactone, a derivative of (+/-)-praeruptorin A, reverses P-glycoprotein mediated multidrug resistance in cancer cells. Bioorg Med Chem 2006; 14(21): 7138-45.
[92]
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 2016; 133(4): e38-e360.
[http://dx.doi.org/10.1161/CIR.000000000000035026673558]
[93]
Prabhakaran S, Ruff I, Bernstein RA, Acute Stroke Intervention A. Acute stroke intervention: a systematic review. JAMA 2015; 313(14): 1451-62.
[http://dx.doi.org/10.1001/jama.2015.305825871671]
[94]
Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet 2008; 371(9624): 1612-23.
[http://dx.doi.org/10.1016/S0140-6736(08)60694-718468545]
[95]
Thrift AG, Dewey HM, Macdonell RA, McNeil JJ, Donnan GA. Incidence of the major stroke subtypes: initial findings from the North East Melbourne stroke incidence study (NEMESIS). Stroke 2001; 32(8): 1732-8.
[http://dx.doi.org/10.1161/01.STR.32.8.173211486098]
[96]
Cen J, Liu L, Li MS, et al. Alteration in P-glycoprotein at the blood-brain barrier in the early period of MCAO in rats. J Pharm Pharmacol 2013; 65(5): 665-72.
[http://dx.doi.org/10.1111/jphp.1203323600383]
[97]
Spudich A, Kilic E, Xing H, et al. Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat Neurosci 2006; 9(4): 487-8.
[http://dx.doi.org/10.1038/nn167616565717]
[98]
Murozono M, Matsumoto S, Okada S, et al. Reduction of brain infarction induced by a transient brain ischemia in mdr1a knockout mice. Neurochem Res 2009; 34(9): 1555-61.
[http://dx.doi.org/10.1007/s11064-009-9943-619277863]
[99]
Ji BS, Cen J, He L, et al. Modulation of P-glycoprotein in rat brain microvessel endothelial cells under oxygen glucose deprivation. J Pharm Pharmacol 2013; 65(10): 1508-17.
[http://dx.doi.org/10.1111/jphp.1212224028618]
[100]
Huang L, Shang E, Fan W, et al. S-oxiracetam protect against ischemic stroke via alleviating blood brain barrier dysfunction in rats. Eur J Pharm Sci 2017; 109: 40-7.
[http://dx.doi.org/10.1016/j.ejps.2017.07.02928760594]
[101]
Samantha JR, Ruth M, Margery AB. Nitric Oxide Contributes to Hypoxia-Reoxygenation-Induced P-Glycoprotein Expression in Rat Brain Endothelial Cells. Cellular Mol Neurobiol 2011; 31(7): 1103.
[102]
Neuhaus W, Freidl M, Szkokan P, et al. Effects of NMDA receptor modulators on a blood-brain barrier in vitro model. Brain Res 2011; 1394(1394): 49-61.
[http://dx.doi.org/10.1016/j.brainres.2011.04.00321549356]
[103]
Avemary J, Salvamoser JD, Peraud A, et al. Dynamic regulation of P-glycoprotein in human brain capillaries. Mol Pharm 2013; 10(9): 3333-41.
[http://dx.doi.org/10.1021/mp400110223924183]
[104]
Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet 2018; 391(10130): 1622-36.
[http://dx.doi.org/10.1016/S0140-6736(18)30481-129576504]
[105]
de Vries HE, Kooij G, Frenkel D, et al. Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia 2012; 53(s6)(Suppl. 6): 45-52.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03702.x23134495]
[106]
Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol 2007; 17(2): 210-8.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00064.x17388952]
[107]
Al-Izki S, Pryce G, Hankey DJ, et al. Lesional-targeting of neuroprotection to the inflammatory penumbra in experimental multiple sclerosis. Brain 2014; 137(Pt 1): 92-108.
[http://dx.doi.org/10.1093/brain/awt32424287115]
[108]
Kooij G, Kroon J, Paul D, et al. P-glycoprotein regulates trafficking of CD8(+) T cells to the brain parenchyma. Acta Neuropathol 2014; 127(5): 699-711.
[109]
Kooij G, van Horssen J, de Lange EC, et al. T lymphocytes impair P-glycoprotein function during neuroinflammation. J Autoimmun 2010; 34(4): 416-25.
[http://dx.doi.org/10.1016/j.jaut.2009.10.00619959334]
[110]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[PMID: 28872215]
[111]
Jost BC, Grossberg GT. The natural history of Alzheimer’s disease: a brain bank study. J Am Geriatr Soc 1995; 43(11): 1248-55.
[http://dx.doi.org/10.1111/j.1532-5415.1995.tb07401.x7594159]
[112]
Crutch SJ, Lehmann M, Schott JM, et al. Posterior cortical atrophy. Lancet Neurol 2012; 11(2): 170-8.
[http://dx.doi.org/10.1016/S1474-4422(11)70289-722265212]
[113]
Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76(11): 1006-14.
[http://dx.doi.org/10.1212/WNL.0b013e31821103e621325651]
[114]
Lam B, Masellis M, Freedman M, Stuss DT, Black SE. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther 2013; 5(1): 1.
[http://dx.doi.org/10.1186/alzrt15523302773]
[115]
Nunomura A, Moreira PI, Lee HG, et al. Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol Disord Drug Targets 2007; 6(6): 411-23.
[http://dx.doi.org/10.2174/18715270778339920118220780]
[116]
Napoli I, Neumann H. Microglial clearance function in health and disease. Neuroscience 2009; 158(3): 1030-8.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.04618644426]
[117]
Gomez-Arboledas A, Davila JC, Sanchez-Mejias E, et al. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease. Glia 2018; 66(3): 637-53.
[http://dx.doi.org/10.1002/glia.2327029178139]
[118]
Vanden Dries V, Stygelbout V, Pierrot N, et al. Amyloid precursor protein reduction enhances the formation of neurofibrillary tangles in a mutant tau transgenic mouse model. Neurobiol Aging 2017; 55: 202-12.
[119]
Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 2005; 28(4): 202-8.
[http://dx.doi.org/10.1016/j.tins.2005.02.00115808355]
[120]
Hartz AM, Miller DS, Bauer B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer’s disease. Mol Pharmacol 2010; 77(5): 715-23.
[http://dx.doi.org/10.1124/mol.109.06175420101004]
[121]
Bruckmann S, Brenn A, Grube M, et al. Lack of p-glycoprotein results in impairment of removal of beta-amyloid and increased intraparenchymal cerebral amyloid angiopathy after active immunization in a transgenic mouse model of alzheimer’s disease. Curr Alzheimer Res 2017; 14(6): 656-67.
[122]
van Assema DM, Lubberink M, Bauer M, et al. Blood-brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 2012; 135(Pt 1): 181-9.
[123]
Hartz AMS, Zhong Y, Wolf A, et al. Aβ40 Reduces P-Glycoprotein at the Blood-Brain Barrier through the Ubiquitin-Proteasome Pathway. J Neurosci 2016; 36(6): 1930-41.
[http://dx.doi.org/10.1523/JNEUROSCI.0350-15.201626865616]
[124]
Hartz AMS, Zhong Y, Shen AN, Abner EL, Bauer B. Preventing P-gp ubiquitination lowers Aβ brain levels in an alzheimer’s disease mouse model. Front Aging Neurosci 2018; 10: 186.
[125]
Aβ1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-κB signaling.%A Park R. Cell death & disease 2014; 5: e1299.
[126]
Liu L, Wan W, Xia S, Kalionis B, Li Y. Dysfunctional Wnt/β-catenin signaling contributes to blood-brain barrier breakdown in Alzheimer’s disease. Neurochem Int 2014; 75: 19-25.
[http://dx.doi.org/10.1016/j.neuint.2014.05.00424859746]
[127]
Wijesuriya HC, Bullock JY, Faull RL, Hladky SB, Barrand MA. ABC efflux transporters in brain vasculature of Alzheimer’s subjects. Brain Res 2010; 1358: 228-38.
[http://dx.doi.org/10.1016/j.brainres.2010.08.03420727860]
[128]
Riganti C, Salaroglio IC, Pinzòn-Daza ML, et al. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling. Cell Mol Life Sci 2014; 71(3): 499-516.
[http://dx.doi.org/10.1007/s00018-013-1397-y23771630]
[129]
Hartz AMS, Miller DS, Bauer B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer’s disease. Mol Pharmacol 2010; 77(5): 715-23.
[http://dx.doi.org/10.1124/mol.109.06175420101004]
[130]
Ngugi AK, Bottomley C, Fegan G, et al. Premature mortality in active convulsive epilepsy in rural Kenya: causes and associated factors. Neurology 2014; 82(7): 582-9.
[http://dx.doi.org/10.1212/WNL.000000000000012324443454]
[131]
Ni H, Sun Q, Tian T, Feng X, Sun BL. Long-term expression of metabolism-associated genes in the rat hippocampus following recurrent neonatal seizures and its regulation by melatonin. Mol Med Rep 2015; 12(2): 2727-34.
[http://dx.doi.org/10.3892/mmr.2015.369125937089]
[132]
Kwan P, Brodie MJ. Refractory epilepsy: mechanisms and solutions. Expert Rev Neurother 2006; 6(3): 397-406.
[http://dx.doi.org/10.1586/14737175.6.3.39716533143]
[133]
Potschka H, Luna-Munguia H. CNS transporters and drug delivery in epilepsy. Curr Pharm Des 2014; 20(10): 1534-42.
[134]
Kwan P, Li HM, Al-Jufairi E, et al. Association between temporal lobe P-glycoprotein expression and seizure recurrence after surgery for pharmacoresistant temporal lobe epilepsy. Neurobiol Dis 2010; 39(2): 192-7.
[http://dx.doi.org/10.1016/j.nbd.2010.04.00620403441]
[135]
Bauer M, Karch R, Zeitlinger M, et al. In vivo P-glycoprotein function before and after epilepsy surgery. Neurology 2014; 83(15): 1326-31.
[http://dx.doi.org/10.1212/WNL.000000000000085825186858]
[136]
Aimei M, Cuicui W, Yinghui C, Weien Y. P-glycoprotein alters blood–brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy. Drug Des Devel Ther 2013; 7: 1447-54.
[137]
Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia 2005; 46(2): 224-35.
[http://dx.doi.org/10.1111/j.0013-9580.2005.31904.x15679503]
[138]
Hartz AM, Pekcec A, Soldner EL, et al. P-gp protein expression and transport activity in rodent seizure models and human epilepsy. Mol Pharm 2017; 14(4): 999-1011.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b0077028195743]
[139]
Yu N, Liu H, Zhang YF, et al. Effects of brain IKKβ gene silencing by small interfering RNA on P-glycoprotein expression and brain damage in the rat kainic acid-induced seizure model. CNS Neurol Disord Drug Targets 2014; 13(4): 661-72.
[140]
Xie Y, Yu N, Chen Y, et al. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway. Mol Med Rep 2017; 16(2): 1691-700.
[http://dx.doi.org/10.3892/mmr.2017.677228627626]
[141]
Yu N, Zhang YF, Zhang K, et al. Pregnane X receptor not nuclear factor-kappa B up-regulates P-glycoprotein expression in the brain of chronic epileptic rats induced by kainic acid. Neurochem Res 2017; 42(8): 2167-77.
[http://dx.doi.org/10.1007/s11064-017-2224-x28303499]
[142]
Bauer B, Hartz AM, Pekcec A, et al. Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol 2008; 73(5): 1444-53.
[143]
Chi X, Huang C, Li R, et al. Inhibition of mTOR pathway by rapamycin decreases P-glycoprotein expression and spontaneous seizures in pharmacoresistant epilepsy. J Mol Neurosci 2017; 61(4): 553-62.
[http://dx.doi.org/10.1007/s12031-017-0897-x28229367]
[144]
Chary MB, Eric DM, Breno JAP, et al. Adult Neurogenesis and Glial Oncogenesis: When the Process Fails In. BioMed Res Int 2014; 2014: 438639.
[145]
Wesseling P, Capper D. WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol 2018; 44(2): 139-50.
[http://dx.doi.org/10.1111/nan.1243228815663]
[146]
Eyüpoglu IY, Buchfelder M, Savaskan NE. Surgical resection of malignant gliomas-role in optimizing patient outcome. Nat Rev Neurol 2013; 9(3): 141-51.
[http://dx.doi.org/10.1038/nrneurol.2012.27923358480]
[147]
Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131(6): 803-20.
[http://dx.doi.org/10.1007/s00401-016-1545-127157931]
[148]
Ferris SP, Hofmann JW, Solomon DA, Perry A. Characterization of gliomas: from morphology to molecules. Virchows Arch 2017; 471(2): 257-69.
[149]
Ostrom QT, Gittleman H, Truitt G, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2011-2015. Neuro Oncol 20181; 20(suppl_4): iv1-iv86.
[150]
Calatozzolo C, Gelati M, Ciusani E, et al. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-π in human glioma. J Neurooncol 2005; 74(2): 113-21.
[http://dx.doi.org/10.1007/s11060-004-6152-716193381]
[151]
de Faria GP, de Oliveira JA, de Oliveira JG, et al. Differences in the expression pattern of P-glycoprotein and MRP1 in low-grade and high-grade gliomas. Cancer Invest 2008; 26(9): 883-9.
[152]
Kondo S, Kondo Y, Hara H, et al. mdm2 gene mediates the expression of mdr1 gene and P-glycoprotein in a human glioblastoma cell line. Br J Cancer 1996; 74(8): 1263-8.
[http://dx.doi.org/10.1038/bjc.1996.5278883415]
[153]
Angelastro JM, Lamé MW. Overexpression of CD133 promotes drug resistance in C6 glioma cells. Mol Cancer Res 2010; 8(8): 1105-15.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-038320663862]
[154]
Wang Q, Wang Z, Chu L, et al. The effects and molecular mechanisms of mir-106a in multidrug resistance reversal in human glioma U87/DDP and U251/G cell lines. PLoS One 2015; 10(5): e0125473.
[155]
Riganti C, Salaroglio IC, Caldera V, et al. Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/β-catenin pathway. Neuro-oncol 2013; 15(11): 1502-17.
[http://dx.doi.org/10.1093/neuonc/not10423897632]
[156]
Lu NZ, Wardell SE, Burnstein KL, et al. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 2006; 58(4): 782-97.
[http://dx.doi.org/10.1124/pr.58.4.917132855]
[157]
Kumar R, Thompson EB. Gene regulation by the glucocorticoid receptor: structure:function relationship. J Steroid Biochem Mol Biol 2005; 94(5): 383-94.
[http://dx.doi.org/10.1016/j.jsbmb.2004.12.04615876404]
[158]
Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 2013; 132(5): 1033-44.
[http://dx.doi.org/10.1016/j.jaci.2013.09.00724084075]
[159]
Ratman D, Vanden Berghe W, Dejager L, et al. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol 2013; 380(1-2): 41-54.
[http://dx.doi.org/10.1016/j.mce.2012.12.01423267834]
[160]
Oakley RH, Cidlowski JA. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem 2011; 286(5): 3177-84.
[http://dx.doi.org/10.1074/jbc.R110.17932521149445]
[161]
Charmandari E, Chrousos GP, Ichijo T, et al. The human glucocorticoid receptor (hGR) β isoform suppresses the transcriptional activity of hGRalpha by interfering with formation of active coactivator complexes. Mol Endocrinol 2005; 19(1): 52-64.
[http://dx.doi.org/10.1210/me.2004-011215459252]
[162]
Zielińska KA, Van Moortel L, Opdenakker G, De Bosscher K, Van den Steen PE. Endothelial response to glucocorticoids in inflammatory diseases. Front Immunol 2016; 7(6): 592.
[http://dx.doi.org/10.3389/fimmu.2016.0059228018358]
[163]
Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad. Front Neuroendocrinol 2017; 46: 15-31.
[164]
Jiang P, Chen C, Wang R, et al. hESC-derived Olig2+ progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury. Nat Commun 2013; 4(3): 2196.
[http://dx.doi.org/10.1038/ncomms319623880652]
[165]
Yong L, Lei H, Qingyi M, et al. Repression of the glucocorticoid receptor aggravates acute ischemic brain injuries in adult mice. Int J Mol Sci 2018; 19(8): 2428.
[166]
Xu HF, Fang XY, Zhu SH, et al. Glucocorticoid treatment inhibits intracerebral hemorrhage-induced inflammation by targeting the microRNA-155/SOCS-1 signaling pathway. Mol Med Rep 2016; 14(4): 3798-804.
[http://dx.doi.org/10.3892/mmr.2016.5716]
[167]
Suwanjang W, Holmström KM, Chetsawang B, Abramov AY. Glucocorticoids reduce intracellular calcium concentration and protects neurons against glutamate toxicity. Cell Calcium 2013; 53(4): 256-63.
[http://dx.doi.org/10.1016/j.ceca.2012.12.00623340218]
[168]
Miljković Z, Momcilović M, Miljković D, Mostarica-Stojković M. Methylprednisolone inhibits IFN-gamma and IL-17 expression and production by cells infiltrating central nervous system in experimental autoimmune encephalomyelitis. J Neuroinflammation 2009; 11(6): 37.
[169]
Wei Z, Wang M, Hong M, et al. Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor β, modulating HPA function and glucocorticoid receptor expression. Am J Transl Res 2016; 8(4): 1910-8.
[PMID: 27186315]
[170]
Ysrraelit MC, Gaitán MI, Lopez AS, Correale J. Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis. Neurology 2008; 71(24): 1948-54.
[http://dx.doi.org/10.1212/01.wnl.0000336918.32695.6b19064876]
[171]
Ros-Bernal F, Hunot S, Herrero MT, et al. Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc Natl Acad Sci USA 2011; 108(16): 6632-7.
[172]
Nakatani Y, Amano T, Tsuji M, Takeda H. Corticosterone suppresses the proliferation of BV2 microglia cells via glucocorticoid, but not mineralocorticoid receptor. Life Sci 2012; 91(15-16): 761-70.
[http://dx.doi.org/10.1016/j.lfs.2012.08.01922940619]
[173]
Crossin KL, Tai MH, Krushel LA, Mauro VP, Edelman GM. Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci USA 1997; 94(6): 2687-92.
[http://dx.doi.org/10.1073/pnas.94.6.26879122257]
[174]
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8(69): 114393-413.
[http://dx.doi.org/10.18632/oncotarget.2310629371994]
[175]
Eyo UB, Murugan M, Wu LJ. Microglia-Neuron Communication in Epilepsy. Glia 2017; 65(1): 5-18.
[http://dx.doi.org/10.1002/glia.2300627189853]
[176]
Wake H, Fields RD. Physiological function of microglia. Neuron Glia Biol 2011; 7(1): 1-3.
[http://dx.doi.org/10.1017/S1740925X1200016622857736]
[177]
Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. Int J Mol Sci 2017 Oct 13 18(10): E2135.
[178]
Melief J, Schuurman KG, van de Garde MD, et al. Microglia in normal appearing white matter of multiple sclerosis are alerted but immunosuppressed. Glia 2013; 61(11): 1848-61.
[http://dx.doi.org/10.1002/glia.2256224014207]
[179]
Yin Z, Raj D, Saiepour N, et al. Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging 2017; 55: 115-22.
[180]
BD T. Microglia and neuroprotection. A Chen Z In: Journal of neurochemistry. 2016; pp. 10-7.
[181]
Guruswamy R, ElAli A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci 2017; 18(3): 496.
[http://dx.doi.org/10.3390/ijms1803049628245599]
[182]
Y, X. and P. DD, Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. A Ghosh M. Journal of neuroinflammation 2016; 13: 9.
[183]
Du L, Zhang Y, Chen Y, et al. Role of microglia in neurological disorders and their potentials as a therapeutic target. Mol Neurobiol 2017; 54(10): 7567-84.
[184]
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 2016; 173(4): 649-65.
[http://dx.doi.org/10.1111/bph.1313925800044]
[185]
Bsibsi M, Peferoen LA, Holtman IR, et al. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 2014; 128(2): 215-29.
[http://dx.doi.org/10.1007/s00401-014-1317-824997049]
[186]
Fourrier C, Remus-Borel J, Greenhalgh AD, et al. Docosahexaenoic acid-containing choline phospholipid modulates LPS-induced neuroinflammation in vivo and in microglia in vitro. J Neuroinflammation 2017; 14(1): 170.
[http://dx.doi.org/10.1186/s12974-017-0939-x28838312]
[187]
Sun R, Zhao Z, Feng J, et al. Glucocorticoid-potentiated spinal microglia activation contributes to preoperative anxiety-induced postoperative hyperalgesia. Mol Neurobiol 2017; 54(6): 4316-28.
[188]
Brzozowska NI, Smith KL, Zhou C, et al. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice. Brain Behav Immun 2017; 65: 251-61.
[http://dx.doi.org/10.1016/j.bbi.2017.05.00828502879]
[189]
Schoenfelder Y, Hiemke C, Schmitt U. Behavioural consequences of p-glycoprotein deficiency in mice, with special focus on stress-related mechanisms. J Neuroendocrinol 2012; 24(5): 809-17.
[http://dx.doi.org/10.1111/j.1365-2826.2012.02278.x22339976]
[190]
Yau JL, Noble J, Thomas S, et al. The antidepressant desipramine requires the ABCB1 (Mdr1)-type p-glycoprotein to upregulate the glucocorticoid receptor in mice. Neuropsychopharmacology 2007; 32(12): 2520-9.
[http://dx.doi.org/10.1038/sj.npp.130138917356567]
[191]
Uhr M, Holsboer F, Müller MB. Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol 2002; 14(9): 753-9.
[http://dx.doi.org/10.1046/j.1365-2826.2002.00836.x12213137]
[192]
Fang P, Li X, Dai J, et al. Immune cell subset differentiation and tissue inflammation. J Hematol Oncol 2018; 31; 11(1): 97.
[193]
X L, et al. Immune cell subset differentiation and tissue inflammation.% A Fang P Journal of hematology & oncology, 2018; 11(1): 97.2015;
[194]
Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012; 30: 1-22.
[195]
Goldmann T, Wieghofer P, Jordão MJ, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 2016; 17(7): 797-805.
[196]
Jones KA, Maltby S, Plank MW, et al. Peripheral immune cells infiltrate into sites of secondary neurodegeneration after ischemic stroke. Brain Behav Immun 2018; 67: 299-307.
[197]
An C, Shi Y, Li P, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 2014; 115: 6-24.
[198]
Rezai-Zadeh K, Gate D, Town T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J Neuroimmune Pharmacol 2009; 4(4): 462-75.
[199]
Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 2011; 585(23): 3770-80.
[http://dx.doi.org/10.1016/j.febslet.2011.04.06621550344]
[200]
Lopes Pinheiro MA, Kooij G, Mizee MR, et al. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta 2016; 1862(3): 461-71.
[201]
Cho H, Park OH, Park J, et al. Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation. Proc Natl Acad Sci USA 2015; 112(13): E1540-9.
[http://dx.doi.org/10.1073/pnas.140961211225775514]
[202]
Park OH, Park J, Yu M, et al. Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay. Genes Dev 2016; 30(18): 2093-105.
[http://dx.doi.org/10.1101/gad.286484.11627798850]
[203]
Li YF, Zhang SX, Ma XW, et al. Levels of peripheral Th17 cells and serum Th17-related cytokines in patients with multiple sclerosis: A meta-analysis. Mult Scler Relat Disord 2017; 18: 20-5.
[204]
Kokras N, Stamouli E, Sotiropoulos I, et al. Acetyl cholinesterase inhibitors and cell-derived peripheral inflammatory cytokines in early stages of alzheimer’s disease. J Clin Psychopharmacol 2018; 38(2): 138-43.
[205]
Liu R, Diao J, He S, et al. XQ-1H protects against ischemic stroke by regulating microglia polarization through PPARγ pathway in mice. Int Immunopharmacol 2018; 57: 72-81.
[206]
Y, G., et al. Alteration of plasma cytokines in patients with active epilepsy.%A Gao F Acta neurologica Scandinavica, 2017; 135(6): 663-9.2017;
[207]
Théron D, Barraud de Lagerie S, Tardivel S, et al. Influence of tumor necrosis factor-alpha on the expression and function of P-glycoprotein in an immortalised rat brain capillary endothelial cell line, GPNT. Biochem Pharmacol 2003; 66(4): 579-87.
[http://dx.doi.org/10.1016/S0006-2952(03)00340-X12906922]
[208]
Poller B, Drewe J, Krähenbühl S, Huwyler J, Gutmann H. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell Mol Neurobiol 2010; 30(1): 63-70.
[http://dx.doi.org/10.1007/s10571-009-9431-119629677]
[209]
Bauer B, Hartz AM, Miller DS. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol 2007; 71(3): 667-75.
[http://dx.doi.org/10.1124/mol.106.02951217132686]
[210]
Hartz AMS, Bauer B, Fricker G, Miller DS. Rapid regulation of P-glycoprotein at the blood-brain barrier by endothelin-1. Mol Pharmacol 2004; 66(3): 387-94.
[http://dx.doi.org/10.1124/mol.104.00150315322229]
[211]
Hoshi Y, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Actin filament-associated protein 1 (AFAP-1) is a key mediator in inflammatory signaling-induced rapid attenuation of intrinsic P-gp function in human brain capillary endothelial cells. J Neurochem 2017; 141(2): 247-62.
[http://dx.doi.org/10.1111/jnc.1396028112407]
[212]
D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 2009; 29(7): 2089-102.
[http://dx.doi.org/10.1523/JNEUROSCI.3567-08.200919228962]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 11
Year: 2019
Page: [1141 - 1155]
Pages: 15
DOI: 10.2174/1389450120666190308144448
Price: $58

Article Metrics

PDF: 37
HTML: 3
EPUB: 1
PRC: 1