Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Recent Findings on Nanotechnology-based Therapeutic Strategies Against Hepatocellular Carcinoma

Author(s): Hany A. Abdel Samie*, Mohd Saeed, Syed Mohd Faisal, Mohd Adnan Kausar and Mohammad A. Kamal*

Volume 20, Issue 4, 2019

Page: [283 - 291] Pages: 9

DOI: 10.2174/1389200220666190308134351

Price: $65

Abstract

Background: Nanotechnology-based therapies are emerging as a promising new anticancer approach. Early clinical studies suggest that nanoparticle-based therapeutics can show enhanced efficacy while reducing side effects minimal, owing to targeted delivery and active intracellular uptake.

Methods: To overcome the problems of gene and drug delivery, nanotechnology based delivery system gained interest in the last two decades. Encouraging results from Nano formulation based drug delivery systems revealed that these emerging restoratives can efficiently lead to more effective, targeted, selective and efficacious delivery of chemotherapeutic agents to the affected target cells.

Results: Nanotechnology not only inhibits targeted gene products in patients with cancer, but also taught us valuable lessons regarding appropriate dosages and route of administrations. Besides, nanotechnology based therapeutics holds remarkable potential as an effective drug delivery system. We critically highlight the recent findings on nanotechnology mediated therapeutics strategies to combat hepatocellular carcinoma and discuss how nanotechnology platform can have enhanced anticancer effects compared with the parent therapeutic agents they contain.

Conclusion: In this review, we discussed the key challenges, recent findings and future perspective in the development of effective nanotechnology-based cancer therapeutics. The emphasis here is focused on nanotechnology-based therapies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with hepatocellular carcinoma.

Keywords: Nanotechnology, cancer therapy, hepatocellular carcinoma, nanomedicine, anticancer drugs, drug delivery & liposomes.

Graphical Abstract
[1]
McGlynn, K.A.; Petrick, J.L.; London, W.T. Global epidemiology of hepatocellular carcinoma: An emphasis on demographic and regional variability. Clin. Liver Dis., 2015, 19(2), 223-238.
[2]
Marquardt, J.U.; Andersen, J.B.; Thorgeirsson, S.S. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat. Rev. Cancer, 2015, 15(11), 653-667.
[3]
Saeed, M.; Alshammari, F.D.; Alam, M.J.; Sarim, K.M.; Ahmad, K.; Hussain, T.; Khan, M.; Kamal, M.A.; Kausar, M.A.; Alkreathy, H.M. A synopsis on the role of human papilloma virus infection in cervical cancer. Curr. Drug Metab., 2018, 19(9), 798-805.
[4]
Bruix, J.; Reig, M.; Sherman, M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology, 2016, 150(4), 835-853.
[5]
Gristina, V.; Cupri, M.G.; Torchio, M.; Mezzogori, C.; Cacciabue, L.; Danova, M. Diabetes and cancer: A critical appraisal of the pathogenetic and therapeutic links. Biomed. Rep., 2015, 3(2), 131-136.
[6]
Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol., 2017, 9(16), 715.
[7]
Subramaniam, A.; Shanmugam, M.K.; Perumal, E.; Li, F.; Nachiyappan, A.; Dai, X.; Swamy, S.N.; Ahn, K.S.; Kumar, A.P.; Tan, B.K. Potential role of signal transducer and activator of transcription (STAT) 3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim. Biophys. Acta, 2013, 1835(1), 46-60.
[8]
Orman, E.S.; Odena, G.; Bataller, R. Alcoholic liver disease: Pathogenesis, management, and novel targets for therapy. J. Gastroenterol. Hepatol., 2013, 28, 77-84.
[9]
Usmani, A.; Mishra, A. Current updates on risk factors of hepatocellular carcinoma. Res. Rev., 2017, 8, 23-31.
[10]
Adnan, M.; Khan, S.; Al-Shammari, E.; Patel, M.; Saeed, M.; Hadi, S. In pursuit of cancer metastasis therapy by bacteria and its biofilms: History or future. Med. Hypotheses, 2017, 100, 78-81.
[11]
Pinzani, M.; Gentilini, P. Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis. Semin. Liver Dis., 1999, 19(4), 397-410.
[12]
Rasool, M.; Rashid, S.; Arooj, M.; Ansari, S.A.; Khan, K.M.; Malik, A.; Naseer, M.I.; Zahid, S.; Manan, A.; Asif, M. New possibilities in hepatocellular carcinoma treatment. Anticancer Res., 2014, 34(4), 1563-1571.
[13]
Guo, S.; Booten, S.L.; Watt, A.; Alvarado, L.; Freier, S.M.; Teckman, J.H.; McCaleb, M.L.; Monia, B.P. Using antisense technology to develop a novel therapy for α-1 antitrypsin deficient (AATD) liver disease and to model AATD lung disease. Rare Dis., 2014, 2(1), 251-261.
[14]
Darvesh, A.S.; Bishayee, A. Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer. Nutr. Cancer, 2013, 65(3), 329-344.
[15]
Ramachandran, R.; Kakar, S. Histological patterns in drug-induced liver disease. J. Clin. Pathol., 2009, 62(6), 481-492.
[16]
Zimmerman, H.J. Drug-induced liver disease. Clin. Liver Dis., 2000, 4(1), 73-96.
[17]
Stine, J.G.; Chalasani, N. Chronic liver injury induced by drugs: A systematic review. Liver Int., 2015, 35(11), 2343-2353.
[18]
Yazici, C.; Russo, M.W.; Bonkovsky, H.L. Drug-induced Liver Disease. In: GI/Liver Secrets; Peter McNally, Ed.; Saunders: Philadelphia, 2014; 5th ed., p. 183.
[19]
Chu, Y.H.; Hsieh, M.J.; Chiou, H.L.; Liou, Y.S.; Yang, C.C.; Yang, S.F.; Kuo, W.H. MicroRNA gene polymorphisms and environmental factors increase patient susceptibility to hepatocellular carcinoma. PLoS One, 2014, 9(2), e89930.
[20]
Galuppo, R.; Maynard, E.; Shah, M.; Daily, M.F.; Chen, C.; Spear, B.T.; Gedaly, R. Synergistic inhibition of HCC and liver cancer stem cell proliferation by targeting RAS/RAF/MAPK and WNT/β-catenin pathways. Anticancer Res., 2014, 34(4), 1709-1713.
[21]
Swamy, S.G.; Kameshwar, V.H.; Shubha, P.B.; Looi, C.Y.; Shanmugam, M.K.; Arfuso, F.; Dharmarajan, A.; Sethi, G.; Shivananju, N.S.; Bishayee, A. Targeting multiple oncogenic pathways for the treatment of hepatocellular carcinoma. Target. Oncol., 2017, 12(1), 1-10.
[22]
Ahmad, S.; Khan, M.Y.; Rafi, Z.; Khan, H.; Siddiqui, Z.; Rehman, S.; Shahab, U.; Khan, M.S.; Saeed, M.; Alouffi, S. Oxidation, glycation and glycoxidation-the vicious cycle and lung cancer. Semin. Cancer Biol., 2018, 49, 29-36.
[23]
Fan, P.; Song, P.; Li, L.; Huang, C.; Chen, J.; Yang, W.; Qiao, S.; Wu, G.; Zhang, G.; Ma, X. Roles of biogenic amines in intestinal signaling. Curr. Protein Pept. Sci., 2017, 18(6), 532-540.
[24]
Estfan, B.; Byrne, M.; Kim, R. Sorafenib in advanced hepatocellular carcinoma: Hypertension as a potential surrogate marker for efficacy. Am. J. Clin. Oncol., 2013, 36(4), 319-324.
[25]
Gao, Y.; Xie, J.; Chen, H.; Gu, S.; Zhao, R.; Shao, J.; Jia, L. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol. Adv., 2014, 32(4), 761-777.
[26]
Fonseca, N.A.; Gregório, A.C.; Valério-Fernandes, Â.; Simões, S.; Moreira, J.N. Bridging cancer biology and the patients’ needs with nanotechnology-based approaches. Cancer Treat. Rev., 2014, 40(5), 626-635.
[27]
Calixto, G.; Bernegossi, J.; de Freitas, L.; Fontana, C.; Chorilli, M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules, 2016, 21(3), 342.
[28]
Reddy, L.H.; Couvreur, P. Nanotechnology for therapy and imaging of liver diseases. J. Hepatol., 2011, 55(6), 1461-1466.
[29]
Wang, X.; Yang, L.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., 2008, 58(2), 97-110.
[30]
Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer, 2011, 12(1), 39-50.
[31]
Azhar, A.; Ashraf, G.M.; Zia, Q.; Ansari, S.A.; Perveen, A.; Hafeez, A.; Saeed, M.; Kamal, M.A.; Alexiou, A.; Ganash, M. Frontier view on nanotechnological strategies for neuro-therapy. Curr. Drug Metab., 2018, 19(7), 596-604.
[32]
Lee, W.H.; Loo, C.Y.; Young, P.M.; Traini, D.; Mason, R.S.; Rohanizadeh, R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin. Drug Deliv., 2014, 11(8), 1183-1201.
[33]
Malarvizhi, G.L.; Retnakumari, A.P.; Nair, S.; Koyakutty, M. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. Nanomedicine, 2014, 10(8), 1649-1659.
[34]
Chang, J.E.; Yoon, I.S.; Sun, P.L.; Yi, E.; Jheon, S.; Shim, C.K. Anticancer efficacy of photodynamic therapy with hematoporphyrin-modified, doxorubicin-loaded nanoparticles in liver cancer. J. Photochem. Photobiol. B, 2014, 140, 49-56.
[35]
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[36]
Ji, Z.; Lin, G.; Lu, Q.; Meng, L.; Shen, X.; Dong, L.; Fu, C.; Zhang, X. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J. Colloid Interface Sci., 2012, 365(1), 143-149.
[37]
Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev., 2013, 65(4), 457-470.
[38]
Nasr, M.; Nafee, N.; Saad, H.; Kazem, A. Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice. Eur. J. Pharm. Biopharm., 2014, 88(1), 216-225.
[39]
Chen, Y.; Ramjiawan, R.R.; Reiberger, T.; Ng, M.R.; Hato, T.; Huang, Y.; Ochiai, H.; Kitahara, S.; Unan, E.C.; Reddy, T.P.; Fan, C.; Huang, P.; Bardeesy, N.; Zhu, A.X.; Jain, R.K.; Duda, D.G. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology, 2015, 61(5), 1591-1602.
[40]
Wu, B.; Liang, Y.; Tan, Y.; Xie, C.; Shen, J.; Zhang, M.; Liu, X.; Yang, L.; Zhang, F.; Liu, L.; Cai, S. Huai; Zheng, D.; Zhang, R.; Zhang, C.; Chen, K.; Tang, X.; Sui, X. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA-TPGS for the treatment of liver cancer. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 59, 792-800.
[41]
Li, Y.J.; Dong, M.; Kong, F.M.; Zhou, J.P. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics. Int. J. Pharm., 2015, 489(1-2), 83-90.
[42]
El Kassas, H.Y.; Attia, A.A. Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac. J. Cancer Prev., 2014, 15(3), 1299-1306.
[43]
Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5(8), 1909-1917.
[44]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[45]
Thomas, S.C. Harshita; Mishra, P.K.; Talegaonkar, S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr. Pharm. Des., 2015, 21(42), 6165-6188.
[46]
Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev., 2001, 47(1), 113-131.
[47]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[48]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[49]
Maciejewski, M. Concepts of trapping topologically by shell molecules. J. Mac. Sci. Chem., 1982, 17(4), 689-703.
[50]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[51]
Idris, N.M.; Gnanasammandhan, M.K.; Zhang, J.; Ho, P.C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med., 2012, 18(10), 1580-1585.
[52]
Papoulas, M.; Theocharis, S. Primary liver tumors: Origin and target therapy. Expert Opin. Ther. Targets, 2009, 13(8), 957-965.
[53]
Parkin, D.M.; Pisani, P.; Ferlay, J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int. J. Cancer, 1999, 80(6), 827-841.
[54]
Reddy, L.H.; Couvreur, P. Nanotechnology for therapy and imaging of liver diseases. J. Hepatol., 2011, 55(6), 1461-1466.
[55]
Varshosaz, J.; Farzan, M. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J. Gastroenterol., 2015, 21(42), 12022-12041.
[56]
Llovet, J.M.; Burroughs, A.; Bruix, J. Hepatocellular carcinoma. Lancet, 2003, 362(9399), 1907-1917.
[57]
Gopalan, B.; Narayanan, K.; Ke, Z.; Lu, T.; Zhang, Y.; Zhuo, L. Therapeutic effect of a multi-targeted imidazolium compound in hepatocellular carcinoma. Biomaterials, 2014, 35(26), 7479-7487.
[58]
Yang, T.; Zhao, P.; Rong, Z.; Li, B.; Xue, H.; You, J.; He, C.; Li, W.; He, X.; Lee, R.J.; Ma, X.; Xiang, G. Anti-tumor efficiency of lipid-coated cisplatin nanoparticles co-loaded with microRNA-375. Theranostics, 2016, 6(1), 142-154.
[59]
Bosch, F.X.; Ribes, J.; Cleries, R.; Diaz, M. Epidemiology of hepatocellular carcinoma. Clin. Liver Dis., 2005, 9(2), 191-211.
[60]
Gomaa, A.I.; Khan, S.A.; Toledano, M.B.; Waked, I.; Taylor-Robinson, S.D. Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis. World J. Gastroenterol., 2008, 14(27), 4300-4308.
[61]
Altekruse, S.F.; Henley, S.J.; Cucinelli, J.E.; McGlynn, K.A. Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am. J. Gastroenterol., 2014, 109(4), 542-553.
[62]
Giannelli, G.; Mikulits, W.; Dooley, S.; Fabregat, I.; Moustakas, A.; Ten Dijke, P.; Portincasa, P.; Winter, P.; Janssen, R.; Leporatti, S.; Herrera, B.; Sanchez, A. The rationale for targeting TGF-beta in chronic liver diseases. Eur. J. Clin. Invest., 2016, 46(4), 349-361.
[63]
Badrealam, K.F.; Owais, M. Nano-sized drug delivery systems: Development and implication in treatment of hepatocellular carcinoma. Dig. Dis., 2015, 33(5), 675-682.
[64]
El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7), 2557-2576.
[65]
Thomas, M.B.; Jaffe, D.; Choti, M.M.; Belghiti, J.; Curley, S.; Fong, Y.; Gores, G.; Kerlan, R.; Merle, P.; O’Neil, B.; Poon, R.; Schwartz, L.; Tepper, J.; Yao, F.; Haller, D.; Mooney, M.; Venook, A. Hepatocellular carcinoma: Consensus recommendations of the national cancer institute clinical trials planning meeting. J. Clin. Oncol., 2010, 28(25), 3994-4005.
[66]
Simonetti, R.G.; Liberati, A.; Angiolini, C.; Pagliaro, L. Treatment of hepatocellular carcinoma: A systematic review of randomized controlled trials. Ann. Oncol., 1997, 8(2), 117-136.
[67]
Ling, D.; Xia, H.; Park, W.; Hackett, M.J.; Song, C.; Na, K.; Hui, K.M.; Hyeon, T. pH-sensitive nanoformulated triptolide as a targeted therapeutic strategy for hepatocellular carcinoma. ACS Nano, 2014, 8(8), 8027-8039.
[68]
Tabrez, S.; Priyadarshini, M.; Urooj, M.; Shakil, S.; Ashraf, G.M.; Khan, M.S.; Kamal, M.A.; Alam, Q.; Jabir, N.R.; Abuzenadah, A.M.; Chaudhary, A.G.; Damanhouri, G.A. Cancer chemoprevention by polyphenols and their potential application as nanomedicine. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev., 2013, 31(1), 67-98.
[69]
Liu, T.; Zeng, L.; Jiang, W.; Fu, Y.; Zheng, W.; Chen, T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine, 2015, 11(4), 947-958.
[70]
Farazuddin, M.; Dua, B.; Zia, Q.; Khan, A.A.; Joshi, B.; Owais, M. Chemotherapeutic potential of curcumin-bearing microcells against hepatocellular carcinoma in model animals. Int. J. Nanomedicine, 2014, 9, 1139-1152.
[71]
Trinh, T.L.; Zhu, G.; Xiao, X.; Puszyk, W.; Sefah, K.; Wu, Q.; Tan, W.; Liu, C. A Synthetic aptamer-drug adduct for targeted liver cancer therapy. PLoS One, 2015, 10(11), e0136673.
[72]
Chen, F.; Zhang, J.; Wang, L.; Wang, Y.; Chen, M. Tumor pH(e)-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale, 2015, 7(38), 15763-15779.
[73]
Fan, M.; Liang, X.; Li, Z.; Wang, H.; Yang, D.; Shi, B. Chlorambucil gemcitabine conjugate nanomedicine for cancer therapy. Eur. J. Pharm. Sci., 2015, 79, 20-26.
[74]
Liu, R.; Xiao, W.; Hu, C.; Xie, R.; Gao, H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J. Control. Release, 2018, 278, 127-139.
[75]
Zhao, J.; Vykoukal, J.; Abdelsalam, M.; Recio-Boiles, A.; Huang, Q.; Qiao, Y.; Singhana, B.; Wallace, M.; Avritscher, R.; Melancon, M.P. Stem cell-mediated delivery of SPIO-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma. Nanotechnology, 2014, 25(40), 405101.
[76]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[77]
Rosler, A.; Vandermeulen, G.W.; Klok, H.A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev., 2001, 53(1), 95-108.
[78]
Alving, C.R. Delivery of liposome-encapsulated drugs to macrophages. Pharmacol. Ther., 1983, 22(3), 407-424.
[79]
Li, F.; Wang, J.Y. Targeted delivery of drugs for liver fibrosis. Expert Opin. Drug Deliv., 2009, 6(5), 531-541.
[80]
Raoof, M.; Corr, S.J.; Zhu, C.; Cisneros, B.T.; Kaluarachchi, W.D.; Phounsavath, S.; Wilson, L.J.; Curley, S.A. Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomedicine, 2014, 10(6), 1121-1130.
[81]
Hu, C.; Cun, X.; Ruan, S.; Liu, R.; Xiao, W.; Yang, X.; Yang, Y.; Yang, C.; Gao, H. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 2018, 168, 64-75.
[82]
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60(11), 1307-1315.
[83]
Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications. Appl. Radiat. Isot., 2011, 69(12), 1692-1697.
[84]
Pissuwan, D.; Niidome, T.; Cortie, M.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release, 2011, 149(1), 65-71.
[85]
Ruan, S.; Hu, C.; Tang, X.; Cun, X.; Xiao, W.; Shi, K.; He, Q.; Gao, H. Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano, 2016, 10(11), 10086-10098.
[86]
Ruan, S.; Cao, X.; Cun, X.; Hu, G.; Zhou, Y.; Zhang, Y.; Lu, L.; He, Q.; Gao, H. Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials, 2015, 60, 100-110.
[87]
Batrakova, E.V.; Gendelman, H.E.; Kabanov, A.V. Cell-mediated drug delivery. Expert Opin. Drug Deliv., 2011, 8(4), 415-433.
[88]
Shah, K. Mesenchymal stem cells engineered for cancer therapy. Adv. Drug Deliv. Rev., 2012, 64(8), 739-748.
[89]
Li, L.; Guan, Y.; Liu, H.; Hao, N.; Liu, T.; Meng, X.; Fu, C.; Li, Y.; Qu, Q.; Zhang, Y.; Ji, S.; Chen, L.; Chen, D.; Tang, F. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano, 2011, 5(9), 7462-7470.
[90]
Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A double-edged sword for health? Adv. Nutr., 2018, 9(1), 21-29.
[91]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol., 2018, 9, 5.
[92]
He, L.; Zhang, J.; Zhao, J.; Ma, N.; Kim, S.W.; Qiao, S.; Ma, X. Autophagy: The last defense against cellular nutritional stress. Adv. Nutr., 2018, 9(4), 493-504.
[93]
Ma, T.; Liu, H.; Chen, W.; Xia, X.; Bai, X.; Liang, L.; Zhang, Y.; Liang, T. Implanted adipose-derived stem cells attenuate small-for-size liver graft injury by secretion of VEGF in rats. Am. J. Transplant., 2012, 12(3), 620-629.
[94]
Grillone, A.; Riva, E.R.; Mondini, A.; Forte, C.; Calucci, L.; Innocenti, C.; De Julian Fernandez, C.; Cappello, V.; Gemmi, M.; Moscato, S.; Ronca, F.; Sacco, R.; Mattoli, V.; Ciofani, G. Active targeting of sorafenib: Preparation, characterization, and in vitro testing of drug-loaded magnetic solid lipid nanoparticles. Adv. Health. Mater., 2015, 4(11), 1681-1690.
[95]
Meng, W.C.; Pan, Y.; Zhao, X. Epirubicin-gold nanoparticles suppress hepatocellular carcinoma xenograft growth in nude mice. J. Biomed. Res., 2015, 29, 486-490.
[96]
Mukherjee, P.; Bhattacharya, R.; Wang, P.; Wang, L.; Basu, S.; Nagy, J.A.; Atala, A.; Mukhopadhyay, D.; Soker, S. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res., 2005, 11(9), 3530-3534.
[97]
Pan, Y.L.; Qiu, S.Y.; Qin, L.; Cai, J.Y.; Sun, J.S. Nanogold inhibits angiogenesis and growth of liver cancer: Experiment with mice. Chin. Med. J., 2009, 89(12), 800-804.
[98]
Li, T.; Zhang, M.; Wang, J.; Wang, T.; Yao, Y.; Zhang, X.; Zhang, C.; Zhang, N. Thermosensitive hydrogel co-loaded with gold nanoparticles and doxorubicin for effective chemoradiotherapy. AAPS J., 2016, 18(1), 146-155.
[99]
Liu, J.Y.; Chiang, T.; Liu, C.H.; Chern, G.G.; Lin, T.T.; Gao, D.Y.; Chen, Y. Delivery of siRNA using CXCR4-targeted nanoparticles modulates tumor microenvironment and achieves a potent antitumor response in liver cancer. Mol. Ther., 2015, 23(11), 1772-1782.
[100]
Bondi, M.L.; Botto, C.; Amore, E.; Emma, M.R.; Augello, G.; Craparo, E.F.; Cervello, M. Lipid nanocarriers containing sorafenib inhibit colonies formation in human hepatocarcinoma cells. Int. J. Pharm., 2015, 493(1-2), 75-85.
[101]
Zhu, D.; Tao, W.; Zhang, H.; Liu, G.; Wang, T.; Zhang, L.; Zeng, X.; Mei, L. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater., 2016, 30, 144-154.
[102]
Lu, X.; Qian, J.; Zhou, H.; Gan, Q.; Tang, W.; Lu, J.; Yuan, Y.; Liu, C. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int. J. Nanomedicine, 2011, 6, 1889-1901.
[103]
Cai, Y.; Xu, Y.; Chan, H.F.; Fang, X.; He, C.; Chen, M. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Mol. Pharm., 2016, 13(3), 699-709.
[104]
Yang, S.; Gao, H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol. Res., 2017, 126, 97-108.
[105]
Cun, X.; Ruan, S.; Chen, J.; Zhang, L.; Li, J.; He, Q.; Gao, H. A dual strategy to improve the penetration and treatment of breast cancer by combining shrinking nanoparticles with collagen depletion by losartan. Acta Biomater., 2016, 31, 186-196.
[106]
Gao, H. Shaping tumor microenvironment for improving nanoparticle delivery. Curr. Drug Metab., 2016, 17(8), 731-736.
[107]
Simpson, A.L.; Leal, J.N.; Pugalenthi, A.; Allen, P.J.; DeMatteo, R.P.; Fong, Y.; Gonen, M.; Jarnagin, W.R.; Kingham, T.P.; Miga, M.I.; Shia, J.; Weiser, M.R.; D’Angelica, M.I. Chemotherapy-induced splenic volume increase is independently associated with major complications after hepatic resection for metastatic colorectal cancer. J. Am. Coll. Surg., 2015, 220(3), 271-280.
[108]
Kanapathipillai, M.; Brock, A.; Ingber, D.E. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv. Drug Deliv. Rev., 2014, 79-80, 107-118.
[109]
Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 2014, 15(6), 1955-1969.
[110]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12320-12364.
[111]
McGlynn, K.A.; Petrick, J.L.; London, W.T. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin. Liver Dis., 2015, 19(2), 223-238.
[112]
Yang, J.D.; Roberts, L.R. Hepatocellular carcinoma: A global view. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(8), 448-548.
[113]
Ahmed, M.; Solbiati, L.; Brace, C.L.; Breen, D.J.; Callstrom, M.R.; Charboneau, J.W.; Chen, M.H.; Choi, B.I.; De Baere, T.; Dodd, G.D., III; Dupuy, D.E.; Gervais, D.A.; Gianfelice, D.; Gillams, A.R.; Lee, F.T., Jr; Leen, E.; Lencioni, R.; Littrup, P.J.; Livraghi, T.; Lu, D.S.; McGahan, J.P.; Meloni, M.F.; Nikolic, B.; Pereira, P.L.; Liang, P.; Rhim, H.; Rose, S.C.; Salem, R.; Sofocleous, C.T.; Solomon, S.B.; Soulen, M.C.; Tanaka, M.; Vogl, T.J.; Wood, B.J.; Goldberg, S.N. International Working Group on Image-Guided Tumor Ablation; Interventional Oncology Sans Frontieres Expert Panel; Technology Assessment Committee of the Society of Interventional Radiology; Standard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update. J. Vasc. Interv. Radiol., 2014, 25(11), 1691-1705.e4.
[114]
Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles(SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63(1-2), 24-46.
[115]
Sheu, A.Y.; Zhang, Z.; Omary, R.A.; Larson, A.C. MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: Preclinical studies in a rodent model. Invest. Radiol., 2013, 48(6), 492-499.
[116]
Drbohlavova, J.; Chomoucka, J.; Adam, V.; Ryvolova, M.; Eckschlager, T.; Hubalek, J.; Kizek, R. Nanocarriers for anticancer drugs--new trends in nanomedicine. Curr. Drug Metab., 2013, 14(5), 547-564.
[117]
Si, Y.; Chen, M.; Wu, L. Syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes. Chem. Soc. Rev., 2016, 45(3), 690-714.
[118]
Ma, X.; Zhang, S.; He, L.; Rong, Y.; Brier, L.W.; Sun, Q.; Liu, R.; Fan, W.; Chen, S.; Yue, Z.; Kim, J.; Guan, K.L.; Li, D.; Zhong, Q. MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy, 2017, 13(3), 592-607.
[119]
Morad, S.A.; Cabot, M.C. Ceramide-orchestrated signalling in cancer cells. Nat. Rev. Cancer, 2013, 13(1), 51-65.
[120]
Dhule, S.S.; Penfornis, P.; He, J.; Harris, M.R.; Terry, T.; John, V.; Pochampally, R. The combined effect of encapsulating curcumin and C6 ceramide in liposomal nanoparticles against osteosarcoma. Mol. Pharm., 2014, 11(2), 417-427.
[121]
Watters, R.J.; Kester, M.; Tran, M.A.; Loughran, T.P., Jr; Liu, X. Development and use of ceramide nanoliposomes in cancer. Methods Enzymol., 2012, 508, 89-108.
[122]
Wang, Y.; Su, H.H.; Yang, Y.; Hu, Y.; Zhang, L.; Blancafort, P.; Huang, L. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol. Ther., 2013, 21(2), 358-367.
[123]
Bakhtiar, A.; Sayyad, M.; Rosli, R.; Maruyama, A.; Chowdhury, E.H. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy. Curr. Gene Ther., 2014, 14(4), 247-257.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy