Mesalazine Activates Adenosine Monophosphate-activated Protein Kinase: Implication in the Anti-inflammatory Activity of this Anti-colitic Drug

Author(s): Heejung Park, Wooseong Kim, Dayoon Kim, Seongkeun Jeong, Yunjin Jung*.

Journal Name: Current Molecular Pharmacology

Volume 12 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: Mesalazine, 5-aminosalicylic acid (5-ASA), is an anti-inflammatory drug that is most widely used for the treatment of Inflammatory Bowel Disease (IBD). Despite extensive clinical use, the exact pharmacological mechanism underlying the anti-colitic effects of 5-ASA has not yet been elucidated. A potential molecular mechanism underlying 5-ASA-mediated anti-colitic activity was investigated.

Methods: An anti-inflammatory pharmacology of 5-ASA was scrutinized in human colon carcinoma cells and murine macrophages and in a TNBS-induced rat colitis model.

Results: 5-ASA induced phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and its substrate acetyl-CoA carboxylase in cells. 5-ASA activation of AMPK occurred regardless of the presence of the pro-inflammatory mediators, Tumor Necrosis Factor Alpha (TNF-α) and lipopolysaccharide. 5-ASA inhibits TNF-α-dependent Nuclear Factor-Kappa B (NF-κB) activation, which was dampened by AMPK inhibition. Oral gavage of sulfasalazine (a colon-specific prodrug of 5- ASA) or rectal administration of 5-ASA ameliorated 2,4,6-trinitrobenzene sulfonic acid (TNBS)- induced rat colitis and activated AMPK in the inflamed colonic tissues while markedly diminishing the levels of NF-κB-regulated pro-inflammatory mediators cyclooxygenase-2, inducible nitric oxide synthase, and cytokine-induced neutrophil chemoattractant-3, elevated by the induction of inflammation. Rectal co-administration of 5-ASA and an AMPK inhibitor undermined 5-ASA-mediated activation of AMPK and its anti-colitic effects.

Conclusion: These findings suggest that the activation of AMPK is involved in 5-ASA-mediated anticolitic effects at least partly via interference with pro-inflammatory NF-κB signaling.

Keywords: 5-Aminosalicylic acid, AMP-activated protein kinase, colitis, inflammatory bowel disease, nuclear factor-kappaB, mesalazine.

[1]
Scaldaferri, F.; Fiocchi, C. Inflammatory bowel disease: progress and current concepts of etiopathogenesis. J. Dig. Dis., 2007, 8(4), 171-178.
[http://dx.doi.org/10.1111/j.1751-2980.2007.00310.x] [PMID: 17970872]
[2]
Griffin, M.G.; Miner, P.B., Jr Conventional drug therapy in inflammatory bowel disease. Gastroenterol. Clin. North Am., 1995, 24(3), 509-521.
[PMID: 8809233]
[3]
Cuzzocrea, S. Emerging biotherapies for inflammatory bowel disease. Expert Opin. Emerg. Drugs, 2003, 8(2), 339-347.
[http://dx.doi.org/10.1517/14728214.8.2.339] [PMID: 14661993]
[4]
Egan, L.J.; Sandborn, W.J. Drug therapy of inflammatory bowel disease. Drugs Today (Barc), 1998, 34(5), 431-446.
[http://dx.doi.org/10.1358/dot.1998.34.5.485242] [PMID: 15010706]
[5]
Criscuoli, V.; Modesto, I.; Orlando, A.; Cottone, M. Mesalazine for the treatment of inflammatory bowel disease. Expert Opin. Pharmacother., 2013, 14(12), 1669-1678.
[http://dx.doi.org/10.1517/14656566.2013.808622] [PMID: 23767798]
[6]
Kaiser, G.C.; Yan, F.; Polk, D.B. Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology, 1999, 116(3), 602-609.
[http://dx.doi.org/10.1016/S0016-5085(99)70182-4] [PMID: 10029619]
[7]
Rousseaux, C.; Lefebvre, B.; Dubuquoy, L.; Lefebvre, P.; Romano, O.; Auwerx, J.; Metzger, D.; Wahli, W.; Desvergne, B.; Naccari, G.C.; Chavatte, P.; Farce, A.; Bulois, P.; Cortot, A.; Colombel, J.F.; Desreumaux, P. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J. Exp. Med., 2005, 201(8), 1205-1215.
[http://dx.doi.org/10.1084/jem.20041948] [PMID: 15824083]
[8]
Baan, B.; Dihal, A.A.; Hoff, E.; Bos, C.L.; Voorneveld, P.W.; Koelink, P.J.; Wildenberg, M.E.; Muncan, V.; Heijmans, J.; Verspaget, H.W.; Richel, D.J.; Hardwick, J.C.; Hommes, D.W.; Peppelenbosch, M.P.; van den Brink, G.R. 5-Aminosalicylic acid inhibits cell cycle progression in a phospholipase D dependent manner in colorectal cancer. Gut, 2012, 61(12), 1708-1715.
[http://dx.doi.org/10.1136/gutjnl-2011-301626] [PMID: 22187071]
[9]
Salminen, A.; Kaarniranta, K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev., 2012, 11(2), 230-241.
[http://dx.doi.org/10.1016/j.arr.2011.12.005] [PMID: 22186033]
[10]
O’Neill, L.A.; Hardie, D.G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature, 2013, 493(7432), 346-355.
[http://dx.doi.org/10.1038/nature11862] [PMID: 23325217]
[11]
Salminen, A.; Kauppinen, A.; Kaarniranta, K. Phytochemicals suppress nuclear factor-κB signaling: impact on health span and the aging process. Curr. Opin. Clin. Nutr. Metab. Care, 2012, 15(1), 23-28.
[http://dx.doi.org/10.1097/MCO.0b013e32834d3ae7] [PMID: 22108095]
[12]
Salminen, A.; Hyttinen, J.M.; Kaarniranta, K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J. Mol. Med. (Berl.), 2011, 89(7), 667-676.
[http://dx.doi.org/10.1007/s00109-011-0748-0] [PMID: 21431325]
[13]
Zhang, Y.; Qiu, J.; Wang, X.; Zhang, Y.; Xia, M. AMP-activated protein kinase suppresses endothelial cell inflammation through phosphorylation of transcriptional coactivator p300. Arterioscler. Thromb. Vasc. Biol., 2011, 31(12), 2897-2908.
[http://dx.doi.org/10.1161/ATVBAHA.111.237453] [PMID: 21940946]
[14]
Hawley, S.A.; Fullerton, M.D.; Ross, F.A.; Schertzer, J.D.; Chevtzoff, C.; Walker, K.J.; Peggie, M.W.; Zibrova, D.; Green, K.A.; Mustard, K.J.; Kemp, B.E.; Sakamoto, K.; Steinberg, G.R.; Hardie, D.G. The ancient drug salicylate directly activates AMP-activated protein kinase. Science, 2012, 336(6083), 918-922.
[http://dx.doi.org/10.1126/science.1215327] [PMID: 22517326]
[15]
Bai, A.; Yong, M.; Ma, A.G.; Ma, Y.; Weiss, C.R.; Guan, Q.; Bernstein, C.N.; Peng, Z. Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis. J. Pharmacol. Exp. Ther., 2010, 333(3), 717-725.
[http://dx.doi.org/10.1124/jpet.109.164954] [PMID: 20237071]
[16]
Bai, A.; Ma, A.G.; Yong, M.; Weiss, C.R.; Ma, Y.; Guan, Q.; Bernstein, C.N.; Peng, Z. AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem. Pharmacol., 2010, 80(11), 1708-1717.
[http://dx.doi.org/10.1016/j.bcp.2010.08.009] [PMID: 20797389]
[17]
Koh, S.J.; Kim, J.M.; Kim, I.K.; Ko, S.H.; Kim, J.S. Anti-inflammatory mechanism of metformin and its effects in intestinal inflammation and colitis-associated colon cancer. J. Gastroenterol. Hepatol., 2014, 29(3), 502-510.
[http://dx.doi.org/10.1111/jgh.12435] [PMID: 24716225]
[18]
Hong, S.; Yum, S.; Yoo, H.J.; Kang, S.; Yoon, J.H.; Min, D.; Kim, Y.M.; Jung, Y. Colon-targeted cell-permeable NFκB inhibitory peptide is orally active against experimental colitis. Mol. Pharm., 2012, 9(5), 1310-1319.
[http://dx.doi.org/10.1021/mp200591q] [PMID: 22428658]
[19]
Morris, G.P.; Beck, P.L.; Herridge, M.S.; Depew, W.T.; Szewczuk, M.R.; Wallace, J.L. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 1989, 96(3), 795-803.
[http://dx.doi.org/10.1016/0016-5085(89)90904-9] [PMID: 2914642]
[20]
Son, M.W.; Ko, J.I.; Doh, H.M.; Kim, W.B.; Park, T.S.; Shim, M.J.; Kim, B.K. Protective effect of taurine on TNBS-induced inflammatory bowel disease in rats. Arch. Pharm. Res., 1998, 21(5), 531-536.
[http://dx.doi.org/10.1007/BF02975370] [PMID: 9875490]
[21]
Jung, Y.; Kim, H.H.; Kim, H.; Kong, H.; Choi, B.; Yang, Y.; Kim, Y. Evaluation of 5-aminosalicyltaurine as a colon-specific prodrug of 5-aminosalicylic acid for treatment of experimental colitis. Eur. J. Pharm. Sci., 2006, 28(1-2), 26-33.
[http://dx.doi.org/10.1016/j.ejps.2005.12.005] [PMID: 16455235]
[22]
Egan, L.J.; Mays, D.C.; Huntoon, C.J.; Bell, M.P.; Pike, M.G.; Sandborn, W.J.; Lipsky, J.J.; McKean, D.J. Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J. Biol. Chem., 1999, 274(37), 26448-26453.
[http://dx.doi.org/10.1074/jbc.274.37.26448] [PMID: 10473604]
[23]
Bantel, H.; Berg, C.; Vieth, M.; Stolte, M.; Kruis, W.; Schulze-Osthoff, K. Mesalazine inhibits activation of transcription factor NF-kappaB in inflamed mucosa of patients with ulcerative colitis. Am. J. Gastroenterol., 2000, 95(12), 3452-3457.
[http://dx.doi.org/10.1111/j.1572-0241.2000.03360.x] [PMID: 11151876]
[24]
Liu, X.M.; Peyton, K.J.; Shebib, A.R.; Wang, H.; Durante, W. Compound C stimulates heme oxygenase-1 gene expression via the Nrf2-ARE pathway to preserve human endothelial cell survival. Biochem. Pharmacol., 2011, 82(4), 371-379.
[http://dx.doi.org/10.1016/j.bcp.2011.05.016] [PMID: 21635873]
[25]
Christensen, L.A.; Fallingborg, J.; Jacobsen, B.A.; Abildgaard, K.; Rasmussen, H.H.; Hansen, S.H.; Rasmussen, S.N. Comparative bioavailability of 5-aminosalicylic acid from a controlled release preparation and an azo-bond preparation. Aliment. Pharmacol. Ther., 1994, 8(3), 289-294.
[http://dx.doi.org/10.1111/j.1365-2036.1994.tb00290.x] [PMID: 7918923]
[26]
Li, G.; Barrett, E.J.; Barrett, M.O.; Cao, W.; Liu, Z. Tumor necrosis factor-alpha induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway. Endocrinology, 2007, 148(7), 3356-3363.
[http://dx.doi.org/10.1210/en.2006-1441] [PMID: 17446186]
[27]
Xing, J.; Wang, Q.; Coughlan, K.; Viollet, B.; Moriasi, C.; Zou, M.H. Inhibition of AMP-activated protein kinase accentuates lipopolysaccharide-induced lung endothelial barrier dysfunction and lung injury in vivo. Am. J. Pathol., 2013, 182(3), 1021-1030.
[http://dx.doi.org/10.1016/j.ajpath.2012.11.022] [PMID: 23306156]
[28]
Gan, H.T.; Chen, Y.Q.; Ouyang, Q. Sulfasalazine inhibits activation of nuclear factor-kappaB in patients with ulcerative colitis. J. Gastroenterol. Hepatol., 2005, 20(7), 1016-1024.
[http://dx.doi.org/10.1111/j.1440-1746.2005.03862.x] [PMID: 15955209]
[29]
Atreya, I.; Atreya, R.; Neurath, M.F. NF-kappaB in inflammatory bowel disease. J. Intern. Med., 2008, 263(6), 591-596.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01953.x] [PMID: 18479258]
[30]
Kim, H.; Jeon, H.; Kong, H.; Yang, Y.; Choi, B.; Kim, Y.M.; Neckers, L.; Jung, Y. A molecular mechanism for the anti-inflammatory effect of taurine-conjugated 5-aminosalicylic acid in inflamed colon. Mol. Pharmacol., 2006, 69(4), 1405-1412.
[http://dx.doi.org/10.1124/mol.105.020578] [PMID: 16407467]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 4
Year: 2019
Page: [272 - 280]
Pages: 9
DOI: 10.2174/1874467212666190308103448
Price: $58

Article Metrics

PDF: 36
HTML: 3