Inhibition of Amyloid Fibrillation by Small Molecules and Nanomaterials: Strategic Development of Pharmaceuticals Against Amyloidosis

Author(s): Vandna Sharma, Kalyan Sundar Ghosh*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Amyloid fibrils are a special class of self-assembled protein molecules, which exhibit various toxic effects in cells. Different physiological disorders such as Alzheimer’s, Parkinson’s, Huntington’s diseases, etc. happen due to amyloid formation and lack of proper cellular mechanism for the removal of fibrils. Therefore, inhibition of amyloid fibrillation will find immense applications to combat the diseases associated with amyloidosis. The development of therapeutics against amyloidosis is definitely challenging and numerous strategies have been followed to find out anti-amyloidogenic molecules. Inhibition of amyloid aggregation of proteins can be achieved either by stabilizing the native conformation or by decreasing the chances of assembly formation by the unfolded/misfolded structures. Various small molecules such as naturally occurring polyphenols, flavonoids, small organic molecules, surfactants, dyes, chaperones, etc. have demonstrated their capability to interrupt the amyloid fibrillation of proteins. In addition to that, in last few years, different nanomaterials were evolved as effective therapeutic inhibitors against amyloidosis. Aromatic and hydrophobic interactions between the partially unfolded protein molecules and the inhibitors had been pointed as a general mechanism for inhibition. In this review article, we are presenting an overview on the inhibition of amyloidosis by using different small molecules (both natural and synthetic origin) as well as nanomaterials for development of pharmaceutical strategies against amyloid diseases.

Keywords: Amyloid fibrillation, inhibition, small molecules, nanomaterials, aromatic and hydrophobic interactions, antiamyloidogenic molecules.

Murphy, M.P.; LeVine, H. Alzheimer’s disease and the β-Amyloid peptide. J. Alzheimers Dis., 2010, 19, 311-327.
Nelson, R.; Eisenberg, D. Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol., 2006, 16, 260-265.
Greenwald, J.; Riek, R. Biology of amyloid: Structure, function, and regulation. Structure, 2010, 18, 1244-1260.
Lee, C.C.; Nayak, A.; Sethuraman, A.; Belfort, G.; McRae, G.J. A three-stage kinetic model of amyloid fibrillation. Biophysics, 2007, J92, 3448-3458.
Kumar, S.; Udgaonkar, J.B. Mechanism of amyloid fibril formation by proteins. Curr. Sci., 2010, 98, 639-655.
Chiti, F.; Stefani, M.; Taddei, N.; Ramponi, G.; Dobson, C.M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature, 2003, 424, 805-808.
Gazit, E. A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J., 2002, 16, 77-83.
Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell, 2012, 148, 1188-1203.
Invernizzi, G.; Papaleo, E.; Sabate, R.; Ventura, S. Protein aggregation: Mechanisms and functional consequences. Int. J. Biochem. Cell Biol., 2012, 44, 1541-1554.
Pastore, A.; Temussi, P. Protein aggregation and misfolding: Good or evil? J. Phys. Condens. Matter, 2012, 24, 244101.
Sgarbossa, A. Natural biomolecules and protein aggregation: Emerging strategies against amyloidogenesis. Int. J. Mol. Sci., 2012, 13, 17121-17137.
Chaturvedi, S.K.; Siddiqi, M.K.; Alam, P.; Khan, R.H. Protein misfolding and aggregation: Mechanism, factors and detection. Process Biochem., 2016, 51, 1183-1192.
Ngoungoure, V.L.N.; Schluesener, J.; Moundipa, P.F.; Schluesener, H. Natural polyphenols binding to amyloid: A broad class of compounds to treat different human amyloid diseases. Mol. Nutr. Food Res., 2015, 59, 8-20.
Porat, Y.; Abramowitz, A.; Gazit, E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des., 2015, 67, 27-37.
Baptista, F.I.; Henriques, A.G.; Silva, A.M.S.; Wiltfang, J. da Cruz e Silva, O.A. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5, 83-92.
Kook, S.Y.; Lee, K.M.; Kim, Y.; Cha, M.Y.; Kang, S.; Baik, S.H.; Lee, H.; Park, R.; Mook-Jung, I. High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis., 2014, 5, 1083.
Chaturvedi, S.K.; Zaidi, N.; Alam, P.; Khan, J.M.; Qadeer, A.; Siddique, I.A.; Asmat, S.; Zaidi, Y.; Khan, R.H. Unraveling comparative anti-Amyloidogenic behavior of pyrazinamide and D-cycloserine: A mechanistic biophysical insight. PLoS One, 2015, 10, e0136528.
Necula, M.; Kayed, R.; Milton, S.; Glabe, C.G. Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem., 2007, 282, 10311-10324.
Hawkes, C.A.; Ng, V.; McLaurin, J. Small molecule inhibitors of Aβ-aggregation and neurotoxicity. Drug Dev. Res., 2009, 70, 111-124.
Nie, Q.; Du, X.; Geng, M. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol. Sin., 2011, 32, 545-551.
Limpert, A.S.; Mattmann, M.E.; Cosford, N.D.P. Recent progress in the discovery of small molecules for the treatment of Amyotrophic Lateral Sclerosis (ALS). Beilstein J. Org. Chem., 2013, 9, 717-732.
Aguzzi, A.; O’Connor, T. Protein aggregation diseases: Pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov., 2010, 9, 237-248.
Bulic, B.; Pickhardt, M.; Mandelkow, E.M.; Mandelkow, E. Tau protein and tau aggregation inhibitors. Neuropharmacology, 2010, 59, 276-289.
Alam, J.; Blackburn, K.; Patrick, D. Neflamapimod: Clinical phase 2b-ready oral small molecule inhibitor of p38α to reverse synaptic dysfunction in early Alzheimer’s disease. J. Prev. Alzheimers Dis., 2017, 4, 273-278.
Hung, S.Y.; Fu, W.M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci., 2017, 24, 47.
Coelho, T.; Merlini, G.; Bulawa, C.E.; Fleming, J.A.; Judge, D.P.; Kelly, J.W.; Maurer, M.S.; Planté-Bordeneuve, V.; Labaudinière, R.; Mundayat, R.; Riley, S.; Lombardo, I.; Huertas, P. Mechanism of action and clinical application of tafamidis in hereditary transthyretin amyloidosis. Neurol. Ther., 2016, 5, 1-25.
Eisele, Y.S.; Monteiro, C.; Fearns, C.; Encalada, S.E.; Wiseman, R.L.; Powers, E.T.; Kelly, J.W. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov., 2015, 14, 759-780.
Ehrnhoefer, D.E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E.E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol., 2008, 15, 558-566.
Bieschke, J.; Russ, J.; Friedrich, R.P.; Ehrnhoefer, D.E.; Wobst, H.; Neugebauer, K.; Wanker, E.E. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc. Natl. Acad. Sci. USA, 2010, 107, 7710-7715.
Kocisko, D.A.; Baron, G.S.; Rubenstein, R.; Chen, J.; Kuizon, S.; Caughey, B. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J. Virol., 2003, 77, 10288-10294.
Ehrnhoefer, D.E.; Duennwald, M.; Markovic, P.; Wacker, J.L.; Engemann, S.; Roark, M.; Legleiter, J.; Marsh, J.L.; Thompson, L.M.; Lindquist, S. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum. Mol. Genet., 2006, 15, 2743-2751.
Meng, F.; Abedini, A.; Plesner, A.; Verchere, C.B.; Raleigh, D.P. The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry, 2010, 49, 8127-8133.
Ferreira, N.; Saraiva, M.J.; Almeida, M.R. Epigallocatechin-3-Gallate as a potential therapeutic drug for TTR-related amyloidosis: “in vivo” evidence from FAP mice models. PLoS One, 2012, 7, e29933.
Hudson, S.A.; Ecroyd, H.; Dehle, F.C.; Musgrave, I.F.; Carver, J.A. (−)-Epigallocatechin-3-gallate (EGCG) maintains κ-casein in its pre-fibrillar state without redirecting its aggregation pathway. J. Mol. Biol., 2009, 392, 689-700.
Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Goedert, M.; Hasegawa, M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem., 2005, 280, 7614-7623.
Ghosh, S.; Pandey, N.K.; Dasgupta, S. (−)-Epicatechin gallate prevents alkali-salt mediated fibrillogenesis of hen egg white lysozyme. Int. J. Biol. Macromol., 2013, 54, 90-98.
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75, 742-750.
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280, 5892-5901.
Ahmad, B.; Lapidus, L.J. Curcumin prevents aggregation in α-synuclein by increasing the reconfiguration rate. J. Biol. Chem., 2012, 287, 9193-9199.
Pandey, N.; Strider, J.; Nolan, W.C.; Yan, S.X.; Galvin, J.E. Curcumin inhibits aggregation of α-synuclein. Acta Neuropathol., 2008, 115, 479-489.
Hafner-Bratkovic, I.; Gaspersic, J.; Smid, L.M.; Bresjanac, M.; Jerala, R. Curcumin binds to the α-helical intermediate and to the amyloid form of prion protein -A new mechanism for the inhibition of PrPSc accumulation. J. Neurochem., 2008, 104, 1553-1564.
Sgarbossa, A.; Buselli, D.; Lenci, F. In vitro perturbation of aggregation processes in beta-amyloid peptides: A spectroscopic study. FEBS Lett., 2008, 582, 3288-3292.
Masuda, M.; Suzuki, N.; Taniguchi, S.; Oikawa, T.; Nonaka, T.; Iwatsubo, T.; Hisanaga, S.; Goedert, M.; Hasegawa, M. Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry, 2006, 45, 6085-6094.
Sahebkar, A. Neuroprotective effects of resveratrol: Potential mechanisms. Neurochem. Int., 2010, 57, 621-622.
Huang, T.C.; Lu, K.T.; Wo, Y.Y.; Wu, Y.J.; Yang, Y.L. Resveratrol protects rats from Abeta-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One, 2011, 6, e29102.
Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J. Biol. Chem., 2005, 280, 37377-37382.
Han, Y.S.; Zheng, W.H.; Bastianetto, S.; Chabot, J.G.; Quirion, R. Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rathippocampal neurons: involvement of protein kinase C. Br. J. Pharmacol., 2004, 141, 997-1005.
Riviere, C.; Richard, T.; Vitrac, X.; Me’rillon, J.M.; Valls, J.; Monti, J.P. New polyphenols active on β-amyloid aggregation. Bioorg. Med. Chem. Lett., 2008, 18, 828-831.
Savaskan, E.; Olivieri, G.; Meier, F.; Seifritz, E.; Wirz-Justice, A.; Muller-Spahn, F. Red wine ingredient resveratrol protects from beta-amyloid neurotoxicity. Gerontology, 2003, 49, 380-383.
Ladiwala, A.R.; Lin, J.C.; Bale, S.S.; Marcelino-Cruz, A.M.; Bhattacharya, M.; Dordick, J.S.; Tessier, P.M. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into off-pathway conformers. J. Biol. Chem., 2010, 285, 24228-24237.
Mishra, R.; Sellin, D.; Radovan, D.; Gohlke, A.; Winter, R. Inhibiting islet amyloid polypeptide fibril formation by the red wine compound resveratrol. ChemBioChem, 2009, 10, 445-449.
Zhu, M.; Rajamani, S.; Kaylor, J.; Han, S.; Zhou, F.; Fink, A.L. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J. Biol. Chem., 2004, 279, 26846-26857.
Matsuzaki, K.; Noguch, T.; Wakabayashi, M.; Ikeda, K.; Okada, T.; Ohashi, Y.; Hoshino, M.; Naiki, H. Inhibitors of amyloid β-protein aggregation mediated by GM1-contain in graft-like membranes. Biochim. Biophys. Acta, 2007, 1768, 122-130.
Liu, Y.; Pukala, T.L.; Musgrave, I.F.; Williams, D.M.; Dehle, F.C.; Carver, J.A. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorg. Med. Chem. Lett., 2013, 23, 6336-6340.
Ban, J.Y.; Nguyen, H.T.; Lee, H.J.; Cho, S.O.; Ju, H.S.; Kim, J.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25-35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull., 2008, 31, 149-153.
Liu, Y.; Carver, J.A.; Calabrese, A.N.; Pukala, T.L. Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochim. Biophys. Acta, 2014, 1844, 1481-1485.
Jayamani, J.; Shanmugam, G. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Eur. J. Med. Chem., 2014, 85, 352-358.
Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87, 172-18.
Wang, J.B.; Wang, Y.M.; Zeng, C.M. Quercetin inhibits amyloid fibrillation of bovine insulin and destabilizes preformed fibrils. Biochem. Biophys. Res. Commun., 2011, 415, 675-679.
Lemkul, J.A.; Bevan, D.R. Destabilizing Alzheimer’s Aβ42 protofibrils with morin: Mechanistic insights from molecular dynamics simulations. Biochemistry, 2010, 49, 3935-3946.
Ahn, J.H.; Hu, Y.; Hernandez, M.; Kim, J.R. Crocetin inhibits beta-amyloid fibrillization and stabilizes beta-amyloid oligomers. Biochem. Biophys. Res. Commun., 2011, 414, 79-83.
Tu, Y.; Ma, S.; Liu, F.; Sun, Y.; Dong, X. Hematoxylin inhibits amyloid β-protein fibrillation and alleviates amyloid-induced cytotoxicity. J. Phys. Chem. B, 2016, 120, 11360-11368.
Cohen, T.; Frydman-Marom, A.; Rechter, M.; Gazit, E. Inhibition of amyloid fibril formation and cytotoxicity by hydroxyindole derivatives. Biochemistry, 2006, 45, 4727-4735.
Soto-Ortega, D.D.; Murphy, B.P.; Gonzalez-Velasquez, F.J.; Wilson, K.A.; Xie, F.; Wang, Q.; Moss, M.A. Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg. Med. Chem., 2011, 19, 2596-2602.
Jayaram, D.T.; Shankar, B.H.; Ramaiah, D. Effective amyloid defibrillation by polyhydroxyl substituted squaraine dyes. Chem. Asian J., 2015, 10, 2689-2694.
Kuo, C.T.; Chen, Y.L.; Hsu, W.T.; How, S.C.; Cheng, Y.H.; Hsueh, S.S.; Liu, H.S.; Lin, T.H.; Wu, J.W.; Wang, S.S. Investigating the effects of erythrosine B on amyloid fibril formation derived from lysozyme. Int. J. Biol. Macromol., 2017, 98, 159-168.
Lendel, C.; Bertoncini, C.W.; Cremades, N.; Waudby, C.A.; Vendruscolo, M.; Dobson, C.M.; Schenk, D.; Christodoulou, J.; Toth, G. On the mechanism of nonspecific inhibitors of protein aggregation: Dissecting the interactions of α-synuclein with congo red and lacmoid. Biochemistry, 2009, 48, 8322-8334.
Lorenzo, A.; Yankner, B.A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA, 1994, 91, 12243-12247.
Sharma, V.; Ghosh, K.S. Inhibition of amyloid fibrillation and destabilization of fibrils of human γD-crystallin by direct red 80 and orange G. Int. J. Biol. Macromol., 2017, 105, 956-964.
Korth, C.; May, B.C.; Cohen, H.F.E.; Prusiner, S.B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA, 2001, 98, 9836-9841.
Prasad, A.; Raju, G.; Sivalingam, V.; Girdhar, A.; Verma, M.; Vats, A.; Taneja, V.; Prabusankar, G.; Patel, B.K. An acridine derivative, [4,5-bis(N-carboxy methyl imidazolium)methylacridine] dibromide, shows anti-TDP-43 aggregation effect in ALS disease models. Sci. Rep., 2016, 6, 39490.
Raju, G.; Vishwanath, S.; Prasad, A.; Patel, B.K.; Prabusankar, G. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities. J. Mol. Struct., 2016, 1107, 291-299.
Palmal, S.; Jana, N.R. Inhibition of amyloid fibril growth by nanoparticle coated with histidine-based polymer. J. Phys. Chem. C, 2014, 118, 21630-21638.
Skaat, H.; Chen, R.; Grinberg, I.; Margel, S. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation. Biomacromolecules, 2012, 13, 2662-2670.
Fei, L.; Perrett, S. Effect of nanoparticles on protein folding and fibrillogenesis. Int. J. Mol. Sci., 2009, 10, 646-655.
Sudhakar, S.; Kalipillai, P.; Santhosh, P.B.; Mani, E. Role of surface charge of inhibitors on amyloid beta fibrillation. J. Phys. Chem., 2017, 121, 6339-6348.
Moore, K.A.; Pate, K.M.; Soto-Ortega, D.D.; Lohse, S. van der, M.N.; Lim, M.; Jackson, K.S.; Lyles, V.D.; Jones, L.; Glassgow, N.; Napumecheno, V.M.; Mobley, S.; Uline, M.J.; Mahtab, R.; Murphy, C.J.; Moss, M.A. Influence of gold nanoparticle surface chemistry and diameter upon Alzheimer’s disease amyloid-β protein aggregation. J. Biol. Eng., 2017, 11, 1-11.
Dubey, K.; Anand, B.G.; Badhwar, R.; Bagler, G.; Navya, P.N.; Daima, H.K.; Kar, K. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids, 2015, 47, 2551-2560.
Liao, Y.H.; Chang, Y.J.; Yoshiike, Y.; Chang, Y.C.; Chen, Y.R. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small, 2012, 8, 3631-3639.
Sardar, S.; Pal, S.; Maity, S.; Chakraborty, J.; Halder, U.C. Amyloid fibril formation by β-lactoglobulin is inhibited by gold nanoparticles. Int. J. Biol. Macromol., 2014, 69, 137-145.
Luthuli, S.D.; Chili, M.M.; Revaprasadu, N.; Shonhai, A. Cysteine-capped gold nanoparticles suppress aggregation of proteins exposed to heat stress. IUBMB Life, 2013, 65, 454-461.
Das, T.; Kolli, V.; Karmakar, S.; Sarkar, N. Functionalisation of polyvinylpyrrolidone on gold nanoparticles enhances its anti-amyloidogenic propensity towards hen egg white lysozyme. Biomedicines, 2017, 5, 1-19.
Palmal, S.; Maity, A.R.; Singh, B.K.; Basu, S.; Jana, N.R. Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chem. A. Eur. J., 2014, 20, 6184-6191. B
Anand, B.G.; Dubey, K.; Shekhawat, D.S.; Kar, K. Capsaicin-coated silver nanoparticles inhibit amyloid fibril formation of serum albumin. Biochemistry, 2016, 55, 3345-3348.
Wang, M.; Kakinen, A.; Pilkington, E.H.; Davis, T.P.; Ke, P.C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci., 2017, 5, 485-493.
Ban, D.K.; Paul, S. Nano zinc oxide inhibits fibrillar growth and suppresses cellular toxicity of lysozyme amyloid. ACS Appl. Mater. Interfaces, 2016, 8, 31587-31601.
Ishtikhar, M.; Usmani, S.S.; Gull, N.; Badr, G.; Mahmoud, M.H.; Khan, R.H. Inhibitory effect of copper nanoparticles on rosin modified surfactant induced aggregation of lysozyme. Int. J. Biol. Macromol., 2015, 78, 379-388. A
Taebnia, N.; Morshedi, D.; Yaghmaei, S.; Aliakbari, F.; Rahimi, F.; Arpanaei, A. Curcumin-loaded amine-functionalized mesoporous silica nanoparticles inhibit the α-synuclein fibrillation and reduce its cytotoxicity associated effects. Langmuir, 2016, 32, 13394-13402.
Bellova, A.; Bystrenova, E.; Koneracka, M.; Kopcansky, P.; Valle, F.; Tomasovicova, N.; Timko, M.; Bagelova, J.; Biscarini, F.; Gazova, Z. Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology, 2010, 21, 065103.
Pradhan, N.; Jana, N.R. Inhibition of protein aggregation by iron oxide nanoparticles conjugated with glutamine- and proline-based osmolytes. ACS Appl. Nano. Mater, 2018, 1, 1094-1103.
Sen, S.; Konar, S.; Pathak, A.; Dasgupta, S.; DasGupta, S. Effect of functionalized magnetic MnFe2O4 nanoparticles on fibrillation of human serum albumin. J. Phys. Chem. B, 2014, 118, 11667-11676.
Bag, S.; Mitra, R.; DasGupta, S. Inhibition of HSA fibrillation by two dimensional nanoparticles. J. Phys. Chem. B, 2017, 121, 5474-5482.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [315 - 323]
Pages: 9
DOI: 10.2174/0929866526666190307164944
Price: $65

Article Metrics

PDF: 21