Fabrication of a Novel Electrospun Polyacrylonitrile/Giant Ball {Mo132} Composite Nanofibrous Mats in Adsorption of 2-CEES

Author(s): Reza Haddad*, Mehdi Dusti Telgerd, Hojjatalla Hadi, Mohammad Sadeghinia.

Journal Name: Current Applied Polymer Science

Volume 3 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Polyacrylonitrile/{Mo132} composite nanofibers mats was synthesized by an electrospinning technique using PAN and giant ball nano-polyoxomolybdate{Mo132}. The nanocluster {Mo132} was mixed with PAN solution and then electrospun to produce bead-free nanofibers. The aim of this study is to evaluate the adsorption ability of electrospun composite nanofibers against sulfur mustard stimulants and assess the possibility of using the electrospun nanofibers as protective membranes in chemical masks and warfare clothing. Adsorption of sulfur mustard stimulants was investigated on the surface of PAN nanofibers embedded with keplerate nano-polyoxomolybdate.

Methods: In order to study the 2-CEES adsorption ability, the prepared PAN/{Mo132} nanofibers composite was further prepared and exposed to 2-CEES solution. The surface morphology and other properties of the PAN/{Mo132} nanofibers composite were characterized by various techniques, including SEM, TEM, FT-IR, UV-Vis. SEM images which showed that the average diameter of the fibers was found to be between 100-120 nm.

Results: The adsorption efficiency of PAN/{Mo132} composite in adsorption of 2-CEES was obtained 89% after 7h at room temperature. The results showed that composite nanofibers PAN/{Mo132} will have a good ability as protective clothing and chemical masks against chemical warfare agents.

Conclusion: PAN/{Mo132} nanofibers were prepared by electrospinning method. The leaching of {Mo132} from the nanofibers was not observed, meaning that the catalyst had excellent stability and could be used as a heterogeneous structure against the adsorption of sulfur mustard stimulant at room temperature. This composite nanofibers membrane exhibited good performance to adsorb 2-CEES in comparison with pure PAN. The adsorption rate of 2-CEES increases with increasing the amount of {Mo132} embedded in the PAN nanofibers.

Keywords: 2-CEES, adsorption, chemical warfare agent, electrospinning, giant ball, nanofibers, polyacrylonitrile.

[1]
Aas P. The threat of mid-spectrum chemical warfare agents. Prehosp Disaster Med 2003; 18(4): 306-12.
[http://dx.doi.org/10.1017/S1049023X00001254] [PMID: 15310042]
[2]
Ganesan K, Raza SK, Vijayaraghavan R. Chemical warfare agents. J Pharm Bioallied Sci 2010; 2(3): 166-78.
[http://dx.doi.org/10.4103/0975-7406.68498] [PMID: 21829312]
[3]
Volans GN, Karalliedde L. Long-term effects of chemical weapons. Lancet 2002; 360(Suppl.): s35-6.
[http://dx.doi.org/10.1016/S0140-6736(02)11813-7] [PMID: 12504496]
[4]
Ellison DH. Handbook of chemical and biological warfare agents. 2nd ed. BacoRaton, New York: CRC press 2007; pp. 131-43.
[5]
Bromberg L, Schreuder-Gibson H, Creasy WR, McGarvey DJ, Fry RA, Hatton TA. Degradation of chemical warfare agents by reactive polymers. Ind Eng Chem Res 2009; 48: 1650-9.
[http://dx.doi.org/10.1021/ie801150y]
[6]
Gall RD, Hill CL, Walker JE. Selective oxidation of thioether mustard (HD) analogs by tert-butylhydroperoxide catalyzed by H5PV2M10O40 supported on porous carbon materials. J Catal 1996; 159: 473-8.
[http://dx.doi.org/10.1006/jcat.1996.0111]
[7]
Abelard JER, Wilmsmeyer AR, Edwards AC, et al. Adsorption of 2-chloroethyl ethyl sulfide on silica: Binding mechanism and energy of a bifunctional hydrogen-bond acceptor at the gas–surface interface. J Phys Chem C 2015; 119: 365-72.
[http://dx.doi.org/10.1021/jp509516x]
[8]
Dong J, Hu J, Chi Y, et al. A Polyoxoniobate–polyoxovanadate double‐anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew Chem Int Ed Engl 2017; 56(16): 4473-7.
[http://dx.doi.org/10.1002/anie.201700159] [PMID: 28322483]
[9]
Kumar JP, Prasad GK, Ramacharyulu PVRK, Singh B, Gopi T, Krishna R. Mesoporous binary metal oxide nanocomposites: Synthesis, characterization and decontamination of sulfur mustard. Mater Chem Phys 2016; 173: 168-78.
[http://dx.doi.org/10.1016/j.matchemphys.2016.01.063]
[10]
Štengl V, Maříková M, Bakardjieva S, Šubrt J, Opluštil F, Olšanská M. Reaction of sulfur mustard gas, soman and agent VX with nanosizedanatase TiO2 and ferrihydrite. J Chem Technol Biotechnol 2005; 80: 754-8.
[http://dx.doi.org/10.1002/jctb.1218]
[11]
Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ. Reactions of VX, GD, and HD with nanosize CaO: Autocatalytic dehydrohalogenation of HD. J Phys Chem B 2000; 104: 5118-23.
[http://dx.doi.org/10.1021/jp000101j]
[12]
Wagner GW, Bartram PW, Koper O, Klabunde KJ. Reactions of VX, GD, and HD with nanosize MgO. J Phys Chem B 1999; 103: 3225-8.
[http://dx.doi.org/10.1021/jp984689u]
[13]
Wagner GW, Procell LR, O’Connor RJ, et al. Reactions of VX, GB, GD, and HD with nanosize Al(2)O(3). Formation of aluminophosphonates. J Am Chem Soc 2001; 123(8): 1636-44.
[http://dx.doi.org/10.1021/ja003518b] [PMID: 11456762]
[14]
Winter RS, Yan J, Busche C, et al. Nanoscale control of polyoxometalate assembly: A Mn8W4 cluster within a W36Si4Mn10 cluster showing a new type of isomerism. Chemistry 2013; 19(9): 2976-81.
[http://dx.doi.org/10.1002/chem.201204345] [PMID: 23362186]
[15]
Borrás-Almenar JJ, Coronado E, Müller A, Pope MT. Polyoxometalate molecular science: From biology to nanotechnology. Dordrecht: Kluwer Academic Publishers 2003.
[http://dx.doi.org/10.1007/978-94-010-0091-8]
[16]
Müller A, Henry M. Nanocapsule water-based chemistry. C R Chim 2003; 6: 1201-8.
[http://dx.doi.org/10.1016/j.crci.2003.07.002]
[17]
Casañ-Pastor N, Gómez-Romero P. Polyoxometalates: From inorganic chemistry to materials science. Front Biosci 2004; 9: 1759-70.
[http://dx.doi.org/10.2741/1365] [PMID: 14977584]
[18]
Lehn JM. Supramolecular chemistry: Concepts and perspectives. Weinheim, Germany: Wiley-VCH 1995.
[http://dx.doi.org/10.1002/3527607439]
[19]
Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Peters F. Organizational forms of matter: An inorganic super fullerene and keplerate based on molybdenum oxide. Angew Chem Int Ed Engl 1998; 37(24): 3359-63.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3359:AID-ANIE3359>3.0.CO;2-J] [PMID: 29711296]
[20]
Muller A, Shah SQN, Bogge H, Schmidtmann M. Molecular growth from a Mo176 to a Mo248 cluster. Nature 1999; 397: 48-50.
[http://dx.doi.org/10.1038/16215]
[21]
Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A. Inorganic chemistry goes protein size: A Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. Angew Chem Int Ed Engl 2002; 41(7): 1162-7.
[http://dx.doi.org/10.1002/1521-3773(20020402)41:7<1162:AID-ANIE1162>3.0.CO;2-8] [PMID: 12491247]
[22]
Gall RD. Destruction of thioether of mustard analogues by divanado decamolybdophosphonic acid. Chem Abstr 1997.126224933
[23]
Ozer R, Ferry J. Photocatalytic oxidation of aqueous 1, 2-dichlorobenzene by polyoxometalates supported on the NaY zeolite. J Phys Chem B 2002; 106: 4336-42.
[http://dx.doi.org/10.1021/jp0138126]
[24]
Sharma A, Singh B, Saxena A. Polyoxometalate impregnated carbon systems for the in situ degradation of sulphur mustard. Carbon 2009; 47: 1911-5.
[http://dx.doi.org/10.1016/j.carbon.2009.03.034]
[25]
Edwards JC, Thiel CY, Benac B, Knifton JF. Solid-state NMR and FT-IR investigation of 12-tungstophosphoric acid on TiO2. Catal Lett 1998; 51: 77-83.
[http://dx.doi.org/10.1023/A:1019045319788]
[26]
Alcaniz-Monge J, Trautwein G, Parres-Esclapez S, Macia-Agullo J. Influence of microporosity of activated carbons as a support of polyoxometalates. Microporous Mesoporous Mater 2008; 115: 440-6.
[http://dx.doi.org/10.1016/j.micromeso.2008.02.017]
[27]
Gall RD, Hill CL, Walker JE. Carbon powder and fiber-supported polyoxometalate catalytic materials. Preparation, characterization, and catalytic oxidation of dialkyl sulfides as mustard (HD) analogues. Chem Mater 1996; 8: 2523-7.
[http://dx.doi.org/10.1021/cm9602757]
[28]
Popa AM, Hu L, Crespy D, Henry M, Rossi RM. Polyoxomolybdate-based selective membranes for chemical protection. J Membr Sci 2011; 373: 196-201.
[http://dx.doi.org/10.1016/j.memsci.2011.03.015]
[29]
Gorji M, Jeddi A, Gharehaghaji A. Fabrication and characterization of polyurethane electrospunnanofiber membranes for protective clothing applications. J Appl Polym Sci 2012; 125: 4135-41.
[http://dx.doi.org/10.1002/app.36611]
[30]
Sundarrajan S, Ramakrishna S. Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 2007; 42: 8400-7.
[http://dx.doi.org/10.1007/s10853-007-1786-4]
[31]
Ramakrishnan R, Sundarrajan S, Liu Y, Barhate RS, Lala NL, Ramakrishna S. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology 2006; 17: 2947-53.
[http://dx.doi.org/10.1088/0957-4484/17/12/021]
[32]
Mahato TH, Prasad GK, Singh B, et al. Reactions of sulphur mustard and sarin on V 1.02 O 2.98 nanotubes. J Hazard Mater 2009; 166(2-3): 1545-9.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.073] [PMID: 19135787]
[33]
Sundarrajan S, Venkatesan A, Ramakrishna S. Fabrication of nanostructured self‐detoxifying nanofiber membranes that contain active polymeric functional groups. Macromol Rapid Commun 2009; 30(20): 1769-74.
[http://dx.doi.org/10.1002/marc.200900208] [PMID: 21638452]
[34]
Dadvar S, Tavanai H, Morshed M, Ghiaci M. The removal of 2-chloroethyl ethyl sulfide using activated carbon nanofibers embedded with MgO and Al2O3 nanoparticles. J Chem Eng Data 2012; 57: 1456-62.
[http://dx.doi.org/10.1021/je201328s]
[35]
Lin JY, Wang XF, Ding B, Yu JY, Sun G, Wang MR. Biomimicry via Electrospinning. Crit Rev Solid State Mater Sci 2012; 37: 94-114.
[http://dx.doi.org/10.1080/10408436.2011.627096]
[36]
Wang XF, Ding B, Sun G, Wang MR, Yu JY. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 2013; 58: 1173-243.
[http://dx.doi.org/10.1016/j.pmatsci.2013.05.001]
[37]
Grahams K, Gogins M, Gibson HS. Incorporation of electrospun nanofibers into functional structures. MD, USA: INTC 2003.
[38]
Sheikh FA, Kanjwal MA, Saran S, Chung WJ, Kim H. Polyurethane nanofibers containing copper nanoparticles as future materials. Appl Surf Sci 2011; 257: 3020-6.
[http://dx.doi.org/10.1016/j.apsusc.2010.10.110]
[39]
Yang YC, Baker JA, Ward JR. Decontamination of chemical warfare agents. Chem Rev 1992; 92: 1729-43.
[http://dx.doi.org/10.1021/cr00016a003]
[40]
Selvam AK, Nallathambi G. Polyacrylonitrile/silver nanoparticle electrospun nanocomposite matrix for bacterial filtration. Fibers Polym 2015; 16: 1327-35.
[http://dx.doi.org/10.1007/s12221-015-1327-8]
[41]
Janthana N, Winita P, Patnarin W. Synergistic effect of welding electrospun fibers and MWCNT reinforcement on strength enhancement of PAN–PVC non-woven mats for water filtration. Chem Eng Sci 2019; 193: 230-42.
[http://dx.doi.org/10.1016/j.ces.2018.09.019]
[42]
Zhai G, Fan Q, Tang Y, Zhang Y, Pan D, Qin Z. Conductive composite films composed of polyaniline thin layers on microporous polyacrylonitrile surfaces. Thin Solid Films 2010; 519: 169-73.
[http://dx.doi.org/10.1016/j.tsf.2010.07.088]
[43]
Pan W, Yang SL, Li G, Jiang JM. Electrical and structural analysis of conductive polyaniline/polyacrylonitrile composites. Eur Polym J 2005; 41: 2127-33.
[http://dx.doi.org/10.1016/j.eurpolymj.2005.04.003]
[44]
Raeesi F, Nouri M, Haghi AK. Electrospinning of polyanilinepolyacrylonitrile blend nanofibers. e‐Polym 2009; 114: 1 13.
[45]
Rezaeifard A, Haddad R, Jafarpour M, Hakimi M. Catalytic epoxidation activity of keplerate polyoxomolybdate nanoball toward aqueous suspension of olefins under mild aerobic conditions. J Am Chem Soc 2013; 135(27): 10036-9.
[http://dx.doi.org/10.1021/ja405852s] [PMID: 23799637]
[46]
Rezaeifard AR, Jafarpour M, Naeimi A, Haddad R. Aqueous heterogeneous oxygenation of hydrocarbons and sulfides catalyzed by recoverable magnetite nanoparticles coated with copper(II) phthalocyanine. Green Chem 2012; 14: 3386-94.
[http://dx.doi.org/10.1039/c2gc35837a]
[47]
Rezaeifard AR, Haddad R, Jafarpour M, Hakimi M. Mo132 nanoball as an efficient and cost-effective catalyst for sustainable oxidation of sulfides and olefins with hydrogen peroxide. ACS Sustain Chem& Eng 2014; 2: 942-50.
[http://dx.doi.org/10.1021/sc4005263]
[48]
Haddad R, Dusti Telgerd M, Abedi H, Roostaie A. Nano-Polyoxotungstate as a recyclable and highly efficient catalyst for cycloaddition of CO2 to cyclic carbonates under solvent-free conditions. Curr Org Synth 2018; 15: 533-40.
[http://dx.doi.org/10.2174/1570179414666170614122804]
[49]
Haddad R. Use of giant nano-polyoxotungstate as a heterogeneous catalyst for green selective oxidation of chemical warfare agent simulants with aqueous hydrogen peroxide. Curr Catal 2017; 6: 97-104.
[http://dx.doi.org/10.2174/2211544705666161130161108]
[50]
Bartelt-Hunt SL, Knappe DRU, Barlaz MA. A review of chemical warfare agent simulants for the study of environmental behavior. Crit Rev Environ Sci Technol 2008; 38: 112-36.
[http://dx.doi.org/10.1080/10643380701643650]
[51]
Sanchez-Soto PJ, Aviles MA, del Rio JC, Gines JM, Pascual J, Perez-Rodriguez JL. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis. J Anal Appl Pyrolysis 2001; 58: 155-72.
[http://dx.doi.org/10.1016/S0165-2370(00)00203-5]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 3
ISSUE: 2
Year: 2019
Page: [130 - 138]
Pages: 9
DOI: 10.2174/2452271603666190307161415
Price: $58

Article Metrics

PDF: 24
HTML: 3
PRC: 1