Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Drug Delivery Systems for Diabetes Treatment

Author(s): Bozidarka L. Zaric, Milan Obradovic, Emina Sudar-Milovanovic, Jovan Nedeljkovic, Vesna Lazic and Esma R. Isenovic*

Volume 25, Issue 2, 2019

Page: [166 - 173] Pages: 8

DOI: 10.2174/1381612825666190306153838

Price: $65

Abstract

Background: Insulin is essential for the treatment of Type 1 diabetes mellitus (T1DM) and is necessary in numerous cases of Type 2 diabetes mellitus (T2DM). Prolonged administration of anti-diabetic therapy is necessary for the maintenance of the normal glucose levels and thereby preventing vascular complications. A better understanding of the disease per se and the technological progress contribute to the development of new approaches with the aim to achieve better glycemic control.

Objective: Current therapies for DM are faced with some challenges. The purpose of this review is to analyze in detail the current trends for insulin delivery systems for diabetes treatment.

Results: Contemporary ways have been proposed for the management of both types of diabetes by adequate application of drug via subcutaneous, buccal, oral, ocular, nasal, rectal and pulmonary ways. Development of improved oral administration of insulin is beneficial regarding mimicking physiological pathway of insulin and minimizing the discomfort of the patient. Various nanoparticle carriers for oral and other ways of insulin delivery are currently being developed. Engineered specific properties of nanoparticles (NP): controlling toxicity of NP, stability and drug release, can allow delivery of higher concentration of the drug to the desired location.

Conclusions: The successful development of any drug delivery system relies on solving three important issues: toxicity of nanoparticles, stability of nanoparticles, and desired drug release rate at targeted sites. The main goals of future investigations are to improve the existing therapies by pharmacokinetic modifications, development of a fully automatized system to mimic insulin delivery by the pancreas and reduce invasiveness during admission.

Keywords: Diabetes type 1, Diabetes type 2, delivery systems, insulin, nanoparticles, glucose level.

[1]
Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon, England : UK Ed) 2014; 42: pp. 698-702.
[2]
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv 2016; 23(7): 2371-90.
[3]
Cichocka E, Wietchy A, Nabrdalik K, Gumprecht J. Insulin therapy - new directions of research. Endokrynol Pol 2016; 67(3): 314-24.
[4]
Shah RB, Patel M, Maahs DM, Shah VN. Insulin delivery methods: Past, present and future. Int J Pharm Investig 2016; 6(1): 1-9.
[5]
Castle JR, DeVries JH, Kovatchev B. Future of Automated Insulin Delivery Systems. Diabetes Technol Ther 2017; 19(S3): S67-72.
[6]
Ergun-Longmire B, Maclaren NK. Etiology and Pathogenesis of Diabetes Mellitus IN Children. Endotext 2000.
[7]
Diagnosis and classification of diabetes mellitus. Diabetes Care 2009; 32(Suppl. 1): S62-7.
[8]
Lebovitz HE. Etiology and pathogenesis of diabetes mellitus. Pediatr Clin North Am 1984; 31(3): 521-30.
[10]
Maclean H. Some observations on diabetes and insulin in general practice. Postgrad Med J 1926; 1(6): 73-7.
[11]
Clinical practice guidelines for treatment of diabetes mellitus. CMAJ 1992; 147(5): 697-712.
[12]
Butterfield WJ, Camp JL, Hardwick C, Holling HE. Clinical studies on the hypoglycaemic action of the sulphonylureas. Lancet 1957; 272(6972): 753-6.
[13]
Krall LP, White P, Bradley RF. Clinical use of the biguanides and their role in stabilizing juvenile-type diabetes. Diabetes 1958; 7(6): 468-77.
[14]
Weatherall J, Polonsky WH, Lanar S, et al. When insulin degludec enhances quality of life in patients with type 2 diabetes: A qualitative investigation. Health Qual Life Outcomes 2018; 16(1): 87.
[15]
Vora J, Christensen T, Rana A, Bain SC. Insulin degludec versus insulin glargine in type 1 and type 2 diabetes mellitus: A meta-analysis of endpoints in phase 3a trials. Diabetes Ther 2014; 5(2): 435-46.
[16]
Johnston SS, Conner C, Aagren M, Smith DM, Bouchard J, Brett J. Evidence linking hypoglycemic events to an increased risk of acute cardiovascular events in patients with type 2 diabetes. Diabetes Care 2011; 34(5): 1164-70.
[17]
Rys PM, Ludwig-Slomczynska AH, Cyganek K, Malecki MT. Continuous subcutaneous insulin infusion vs multiple daily injections in pregnant women with type 1 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials and observational studies. Eur J Endocrinol 2018; 178(5): 545-63.
[18]
Continuous SII. Continuous Subcutaneous Insulin Infusion (CSII) Pumps for Type 1 and Type 2 Adult Diabetic Populations: An Evidence-Based Analysis. Ont Health Technol Assess Ser 2009; 9(20): 1-58.
[19]
Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2014; 383(9911): 69-82.
[20]
Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol 2012; 64(1): 11-29.
[21]
Kochba E, Levin Y, Raz I, Cahn A. Improved Insulin Pharmacokinetics Using a Novel Microneedle Device for Intradermal Delivery in Patients with Type 2 Diabetes. Diabetes Technol Ther 2016; 18(9): 525-31.
[22]
Campisi G, Paderni C, Saccone R, Di Fede O, Wolff A, Giannola LI. Human buccal mucosa as an innovative site of drug delivery. Curr Pharm Des 2010; 16(6): 641-52.
[23]
Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. J Control Release 2014; 190: 580-92.
[24]
Henkin RI. Inhaled insulin-intrapulmonary, intranasal, and other routes of administration: mechanisms of action. Nutrition 2010; 26(1): 33-9.
[25]
Iyire A, Alaayedi M, Mohammed AR. Pre-formulation and systematic evaluation of amino acid assisted permeability of insulin across in vitro buccal cell layers. Sci Rep 2016; 6: 32498.
[26]
Thundiparambil Azeez Sonia CPS. Oral Delivery of Insulin A volume in Woodhead Publishing Series in Biomedicine 2014; 59-112.
[27]
Shojaei AH. Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharm Sci 1998; 1(1): 15-30.
[28]
Hao J, Heng PW. Buccal delivery systems. Drug Dev Ind Pharm 2003; 29(8): 821-32.
[29]
Caon T, Jin L, Simões CM, Norton RS, Nicolazzo JA. Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res 2015; 32(1): 1-21.
[30]
Chiou GC, Chuang CY, Chang MS. Systemic delivery of insulin through eyes to lower the glucose concentration. J Ocul Pharmacol 1989; 5(1): 81-91.
[31]
Xuan B, McClellan DA, Moore R, Chiou GC. Alternative delivery of insulin via eye drops. Diabetes Technol Ther 2005; 7(5): 695-8.
[32]
Chan J, Cheng-Lai A. Inhaled insulin: A clinical and historical review. Cardiol Rev 2017; 25(3): 140-6.
[33]
Gillis J. Inhaled form of Insulin is approved, Diabetics must weight risk vs. convinience. The Washington Post. 2006.
[34]
Santos Cavaiola T, Edelman S. Inhaled insulin: a breath of fresh air? A review of inhaled insulin. Clin Ther 2014; 36(8): 1275-89.
[35]
Mastrandrea LD. Inhaled insulin: overview of a novel route of insulin administration. Vasc Health Risk Manag 2010; 6: 47-58.
[36]
Ledet G, Graves RA, Bostanian LA, Mandal TK. A second-generation inhaled insulin for diabetes mellitus. American journal of health-system pharmacy. AJHP 2015; 72: 1181-7.
[37]
Li J, Yang L, Ferguson SM, et al. In vitro evaluation of dissolution behavior for a colon-specific drug delivery system (CODES) in multi-pH media using United States Pharmacopeia apparatus II and III. AAPS PharmSciTech 2002; 3(4)E33
[38]
Krauland A H, Guggi D, Bernkop-Schnurch A. Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. Journal of controlled release : official journal of the Controlled Release Society 2004; 95: 547-5.
[39]
Khan MZ, Prebeg Z, Kurjaković N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. I. Manipulation of drug release using Eudragit L100-55 and Eudragit S100 combinations. J Control Release 1999; 58(2): 215-22.
[40]
Fonte P, Araújo F, Reis S, Sarmento B. Oral insulin delivery: how far are we? J Diabetes Sci Technol 2013; 7(2): 520-31.
[41]
Kamei N, Nielsen EJ, Khafagy S, Takeda-Morishita M. Noninvasive insulin delivery: the great potential of cell-penetrating peptides. Ther Deliv 2013; 4(3): 315-26.
[42]
Kullmann S, Veit R, Peter A, et al. Dose-dependent effects of intranasal insulin on resting-state brain activity. J Clin Endocrinol Metab 2018; 103(1): 253-62.
[43]
Benedict C, Hallschmid M, Schmitz K, et al. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 2007; 32(1): 239-43.
[44]
Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 2002; 5(6): 514-6.
[45]
Schöpf V, Kollndorfer K, Pollak M, Mueller CA, Freiherr J. Intranasal insulin influences the olfactory performance of patients with smell loss, dependent on the body mass index: A pilot study. Rhinology 2015; 53(4): 371-8.
[46]
Schmid V, Kullmann S, Gfrörer W, et al. Safety of intranasal human insulin: A review. Diabetes Obes Metab 2018; 20(7): 1563-77.
[47]
Schmid V, Kullmann S, Gfrörer W, et al. Safety of intranasal human insulin: A review. Diabetes Obes Metab 2018; 20(7): 1563-77.
[48]
Vermani K, Garg S. The scope and potential of vaginal drug delivery. Pharm Sci Technol Today 2000; 3(10): 359-64.
[49]
Ensign LM, Cone R, Hanes J. Nanoparticle-based drug delivery to the vagina: A review. J Control Release 2014; 190: 500-14.
[50]
Ning M, Guo Y, Pan H, Yu H, Gu Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: studies in rats. Drug Deliv 2005; 12(6): 399-407.
[51]
Yun M, Choi H, Jung J, Kim C. Development of a thermo-reversible insulin liquid suppository with bioavailability enhancement. Int J Pharm 1999; 189(2): 137-45.
[52]
Yamasaki Y, Shichiri M, Kawamori R, et al. The effectiveness of rectal administration of insulin suppository on normal and diabetic subjects. Diabetes Care 1981; 4(4): 454-8.
[53]
Soares S, Costa A, Sarmento B. Novel non-invasive methods of insulin delivery. Expert Opin Drug Deliv 2012; 9(12): 1539-58.
[54]
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991; 353: 737.
[55]
Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental Applications of Semiconductor Photocatalysis. Chem Rev 1995; 95: 69-96.
[56]
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003; 8(24): 1112-20.
[57]
Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004; 3(9): 785-96.
[58]
Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010; 62(11): 1064-79.
[59]
DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(4): 548-64.
[60]
Rajh T, Dimitrijevic NM, Bissonnette M, Koritarov T, Konda V. Titanium dioxide in the service of the biomedical revolution. Chem Rev 2014; 114(19): 10177-216.
[61]
Davidović S, Lazić V, Vukoje I, et al. Dextran coated silver nanoparticles - Chemical sensor for selective cysteine detection. Colloids Surf B Biointerfaces 2017; 160: 184-91.
[62]
de Las Heras Alarcon C, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev 2005; 34(3): 276-85.
[63]
des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006; 116: 1-27.
[64]
Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. Yao Wu Shi Pin Fen Xi 2015; 23(3): 351-8.
[65]
Xu Y, Zheng Y, Wu L, Zhu X, Zhang Z, Huang Y. Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. ACS Appl Mater Interfaces 2018; 10(11): 9315-24.
[66]
Morishita M, Morishita I, Takayama K, Machida Y, Nagai T. Novel oral microspheres of insulin with protease inhibitor protecting from enzymatic degradation. Int J Pharm 1992; 78: 1-7.
[67]
Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 2008; 132: 171-83.
[68]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[69]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161: 505-22.
[70]
Sharma G, Sharma A R, Nam J S, Doss G P, Lee S S, Chakraborty C. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 2015; 13: 015-0136.
[71]
Yu F, Li Y, Liu CS, et al. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int J Pharm 2015; 484(1-2): 181-91.
[72]
Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 2017; 264: 247-75.
[73]
McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv Colloid Interface Sci 2018; 253: 1-22.
[74]
Fan W, Xia D, Zhu Q, et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 2018; 151: 13-23.
[75]
Kesharwani P, Gorain B, Low SY, et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 2018; 136: 52-77.
[76]
Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int J Pharm 2018; 537(1-2): 223-44.
[77]
Czuba E, Diop M, Mura C, et al. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. Int J Pharm 2018; 542(1-2): 47-55.
[78]
Gao W, Chan JM, Farokhzad OC. pH-Responsive nanoparticles for drug delivery. Mol Pharm 2010; 7(6): 1913-20.
[79]
Karimi M, Eslami M, Sahandi-Zangabad P, et al. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(5): 696-716.
[80]
He Z, Liu Z, Tian H, et al. Scalable production of core-shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale 2018; 10(7): 3307-19.
[81]
Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008; 60(15): 1638-49.
[82]
Liao ZX, Liu MC, Kempson IM, Fa YC, Huang KY. Light-triggered methylcellulose gold nanoparticle hydrogels for leptin release to inhibit fat stores in adipocytes. Int J Nanomedicine 2017; 12: 7603-11.
[83]
Mitchell P. Turning the spotlight on cellular imaging. Nat Biotechnol 2001; 19(11): 1013-7.
[84]
Clark HA, Kopelman R, Tjalkens R, Philbert MA. Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal Chem 1999; 71(21): 4837-43.
[85]
Nikolić MG, Antić Ž, Ćulubrk S, Nedeljković JM, Dramićanin MD. Temperature sensing with Eu3+ doped TiO2 nanoparticles. Sens Actuators B Chem 2014; 201: 46-50.
[86]
Dramicanin M D, Antic Z, Culubrk S, Ahrenkiel S P, Nedeljkovic J M. Self-referenced luminescence thermometry with Sm(3+) doped TiO2 nanoparticles. Nanotechnology 2014; 25: 0957-4484.
[87]
Deng W, Xie Q, Wang H, Ma Z, Wu B, Zhang X. Selenium nanoparticles as versatile carriers for oral delivery of insulin: Insight into the synergic antidiabetic effect and mechanism. Nanomedicine (Lond) 2017; 13(6): 1965-74.
[88]
Bajić V, Spremo-Potparević B, Živković L, et al. Surface-modified TiO2 nanoparticles with ascorbic acid: Antioxidant properties and efficiency against DNA damage in vitro. Colloids Surf B Biointerfaces 2017; 155: 323-31.
[89]
Dekanski D, Spremo-Potparevic B, Bajic V, et al. Acute toxicity study in mice of orally administrated TiO2 nanoparticles functionalized with caffeic acid. Food Chem Toxicol 2018; 115: 42-8.
[90]
Lacerda SH, Park JJ, Meuse C, et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2010; 4(1): 365-79.
[91]
Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 2007; 24(8): 1415-26.
[92]
Anand K, Tiloke C, Naidoo P, Chuturgoon AA. Phytonanotherapy for management of diabetes using green synthesis nanoparticles. J Photochem Photobiol B 2017; 173: 626-39.
[93]
Chen Y W, Chang C W, Hung H S, Kung M L, Yeh B W, Hsieh S. Magnetite nanoparticle interactions with insulin amyloid fibrils. Nanotechnology 2016; 27: 0957-4484.
[94]
Verma A, Sharma S, Gupta PK, et al. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: A mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater 2016; 31: 288-300.
[95]
Hussein J, El-Banna M, Razik TA, El-Naggar ME. Biocompatible zinc oxide nanocrystals stabilized via hydroxyethyl cellulose for mitigation of diabetic complications. Int J Biol Macromol 2018; 107(Pt A): 748-54.
[96]
Zhang Y, Zhang L, Ban Q, Li J, Li CH, Guan YQ. Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery. Nanomedicine (Lond) 2018; 14(2): 353-64.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy