Hyponatremia in Heart Failure: Pathogenesis and Management

Author(s): Mario Rodriguez , Marcelo Hernandez , Wisit Cheungpasitporn , Kianoush B. Kashani , Iqra Riaz , Janani Rangaswami , Eyal Herzog , Maya Guglin , Chayakrit Krittanawong* .

Journal Name: Current Cardiology Reviews

Volume 15 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Hyponatremia is a very common electrolyte abnormality, associated with poor short- and long-term outcomes in patients with heart failure (HF). Two opposite processes can result in hyponatremia in this setting: Volume overload with dilutional hypervolemic hyponatremia from congestion, and hypovolemic hyponatremia from excessive use of natriuretics. These two conditions require different therapeutic approaches. While sodium in the form of normal saline can be lifesaving in the second case, the same treatment would exacerbate hyponatremia in the first case. Hypervolemic hyponatremia in HF patients is multifactorial and occurs mainly due to the persistent release of arginine vasopressin (AVP) in the setting of ineffective renal perfusion secondary to low cardiac output. Fluid restriction and loop diuretics remain mainstay treatments for hypervolemic/ dilutional hyponatremia in patients with HF. In recent years, a few strategies, such as AVP antagonists (Tolvaptan, Conivaptan, and Lixivaptan), and hypertonic saline in addition to loop diuretics, have been proposed as potentially promising treatment options for this condition. This review aimed to summarize the current literature on pathogenesis and management of hyponatremia in patients with HF.

Keywords: Hyponatremia, sodium, heart failure, congestive heart failure, vaptans, pathogenesis.

[1]
Akintoye E, Briasoulis A, Egbe A, et al. National trends in admission and in-hospital mortality of patients with heart failure in the united states (2001-2014). J Am Heart Assoc 2017; 6(12)e006955
[2]
Agarwal SK, Wruck L, Quibrera M, et al. Temporal trends in hospitalization for acute decompensated heart failure in the united states, 1998-2011. Am J Epidemiol 2016; 183: 462-70.
[3]
Ghali JK, Cooper R, Ford E. Trends in hospitalization rates for heart failure in the united states, 1973-1986. Evidence for increasing population prevalence. Arch Intern Med 1990; 150: 769-73.
[4]
Mozaffarian D, Benjamin Emelia J, et al. Executive summary: Heart disease and stroke statistics-2016 update. Circulation 2016; 133: 447-54.
[5]
Ambrosy AP, Fonarow GC, Butler J, et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 2014; 63: 1123-33.
[6]
Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the united states: A policy statement from the American Heart Association. Circ Heart Fail 2013; 6: 606-19.
[7]
Braith RW, Edwards DG. Neurohormonal abnormalities in heart failure: Impact of exercise training. Congest Heart Fail 2003; 9: 70-6.
[8]
Jackson G, Gibbs CR, Davies MK, Lip GY. Abc of heart failure. Pathophysiology. BMJ 2000; 320: 167-70.
[9]
Oster JR, Preston RA, Materson BJ. Fluid and electrolyte disorders in congestive heart failure. Semin Nephrol 1994; 14: 485-505.
[10]
Gheorghiade M, Rossi JS, Cotts W, et al. Characterization and prognostic value of persistent hyponatremia in patients with severe heart failure in the escape trial. Arch Intern Med 2007; 167: 1998-2005.
[11]
Verbrugge FH, Steels P, Grieten L, Nijst P, Tang WH, Mullens W. Hyponatremia in acute decompensated heart failure: Depletion versus dilution. J Am Coll Cardiol 2015; 65: 480-92.
[12]
Holland-Bill L, Christiansen CF, Heide-Jorgensen U, et al. Hyponatremia and mortality risk: A danish cohort study of 279 508 acutely hospitalized patients. Eur J Endocrinol 2015; 173: 71-81.
[13]
Waikar SS, Mount DB, Curhan GC. Mortality after hospitalization with mild, moderate, and severe hyponatremia. Am J Med 2009; 122: 857-65.
[14]
Corona G, Giuliani C, Parenti G, et al. The economic burden of hyponatremia: Systematic review and meta-analysis. Am J Med 2016; 129: 823-35.e824.
[15]
Omar HR, Charnigo R, Guglin M. Prognostic significance of discharge hyponatremia in heart failure patients with normal admission sodium (from the escape trial). Am J Cardiol 2017; 120: 607-15.
[16]
Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med 2000; 342: 1581-9.
[17]
Klein L, O’Connor CM, Leimberger JD, et al. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: Results from the outcomes of a prospective trial of intravenous milrinone for exacerbations of chronic heart failure (optime-chf) study. Circulation 2005; 111: 2454-60.
[18]
Sato N, Gheorghiade M, Kajimoto K, et al. Hyponatremia and in-hospital mortality in patients admitted for heart failure (from the attend registry). Am J Cardiol 2013; 111: 1019-25.
[19]
Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: The escape trial. JAMA 2005; 294: 1625-33.
[20]
Lee SE, Lee HY, Cho HJ, et al. Clinical characteristics and outcome of acute heart failure in korea: Results from the korean acute heart failure registry (korahf). Korean Circ J 2017; 47: 341-53.
[21]
Dunlap ME, Hauptman PJ, Amin AN, et al. Current management of hyponatremia in acute heart failure: A report from the hyponatremia registry for patients with euvolemic and hypervolemic hyponatremia (hn registry). J Am Heart Assoc 2017; 6(8)e005261
[22]
Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med 2006; 119: S30-5.
[23]
Callahan MA, Do HT, Caplan DW, Yoon-Flannery K. Economic impact of hyponatremia in hospitalized patients: A retrospective cohort study. Postgrad Med 2009; 121: 186-91.
[24]
Donze JD, Beeler PE, Bates DW. Impact of hyponatremia correction on the risk for 30-day readmission and death in patients with congestive heart failure. Am J Med 2016; 129: 836-42.
[25]
Albabtain M, Brenner MJ, Nicklas JM, et al. Hyponatremia, cognitive function, and mobility in an outpatient heart failure population. Med Sci Monit 2016; 22: 4978-85.
[26]
Romanovsky A, Bagshaw S, Rosner MH. Hyponatremia and congestive heart failure: A marker of increased mortality and a target for therapy. Int J Nephrol 2011; 2011732746
[27]
De Vecchis R, Di Maio M, Di Biase G, Ariano C. Effects of hyponatremia normalization on the short-term mortality and rehospitalizations in patients with recent acute decompensated heart failure: A retrospective study. J Clin Med 2016; 5: 92.
[28]
Boscoe A, Paramore C, Verbalis JG. Cost of illness of hyponatremia in the United States. Cost Eff Resour Alloc 2006; 4: 10.
[29]
Kazory A. Hyponatremia in heart failure: Revisiting pathophysiology and therapeutic strategies. Clin Cardiol 2010; 33: 322-9.
[30]
Shepshelovich D, Schechter A, Calvarysky B, Diker-Cohen T, Rozen-Zvi B, Gafter-Gvili A. Medication-induced siadh: Distribution and characterization according to medication class. Br J Clin Pharmacol 2017; 83: 1801-7.
[31]
Ramos-Levi AM, Duran Rodriguez-Hervada A, Mendez-Bailon M, Marco-Martinez J. Drug-induced hyponatremia: An updated review. Minerva Endocrinol 2014; 39: 1-12.
[32]
Liamis G, Milionis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kidney Dis 2008; 52: 144-53.
[33]
Uretsky BF, Verbalis JG, Generalovich T, Valdes A, Reddy PS. Plasma vasopressin response to osmotic and hemodynamic stimuli in heart failure. Am J Physiol 1985; 248: H396-402.
[34]
Oren RM. Hyponatremia in congestive heart failure. Am J Cardiol 2005; 95: 2-7.
[35]
Mavani GP, DeVita MV, Michelis MF. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front Med 2015; 2: 19.
[36]
Filippatos TD, Elisaf MS. Hyponatremia in patients with heart failure. World J Cardiol 2013; 5: 317-28.
[37]
Goldsmith SR, Francis GS, Cowley AW Jr. Arginine vasopressin and the renal response to water loading in congestive heart failure. Am J Cardiol 1986; 58: 295-9.
[38]
Lee CR, Watkins ML, Patterson JH, et al. Vasopressin: A new target for the treatment of heart failure. Am Heart J 2003; 146: 9-18.
[39]
Kalra PR, Anker SD, Coats AJ. Water and sodium regulation in chronic heart failure: The role of natriuretic peptides and vasopressin. Cardiovasc Res 2001; 51: 495-509.
[40]
Goldsmith SR. Congestive heart failure: Potential role of arginine vasopressin antagonists in the therapy of heart failure. Congest Heart Fail 2002; 8: 251-6.
[41]
Ronco C. Cardiorenal syndromes: Definition and classification. Contrib Nephrol 2010; 164: 33-8.
[42]
Ronco C, McCullough P, Anker SD, et al. Cardio-renal syndromes: Report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 2010; 31: 703-11.
[43]
Segall L, Nistor I, Covic A. Heart failure in patients with chronic kidney disease: A systematic integrative review. BioMed Res Int 2014; 2014937398
[44]
Kovesdy CP, Lott EH, Lu JL, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation 2012; 125: 677-84.
[45]
Fukushima A, Kinugawa S. Hyponatremia as a surrogate marker for optimal diuretic selection in acute heart failure. J Cardiol 2018; 71: 547-9.
[46]
Liamis G, Filippatos TD, Elisaf MS. Thiazide-associated hyponatremia in the elderly: What the clinician needs to know. J Geriatr Cardiol 2016; 13: 175-82.
[47]
Peacock WF, Costanzo MR, De Marco T, et al. Impact of intravenous loop diuretics on outcomes of patients hospitalized with acute decompensated heart failure: Insights from the adhere registry. Cardiology 2009; 113: 12-9.
[48]
Felker GM, O’Connor CM, Braunwald E. Loop diuretics in acute decompensated heart failure: Necessary? Evil? A necessary evil? Circ Heart Fail 2009; 2: 56-62.
[49]
Spital A. Diuretic-induced hyponatremia. Am J Nephrol 1999; 19: 447-52.
[50]
Moranville MP, Choi S, Hogg J, Anderson AS, Rich JD. Comparison of metolazone versus chlorothiazide in acute decompensated heart failure with diuretic resistance. Cardiovasc Ther 2015; 33: 42-9.
[51]
Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol 2010; 56: 1527.
[52]
Kroger N, Szuba J, Frenzel H. Metolazone in the treatment of advanced therapy-resistant dilated cardiomyopathy. Med Klin 1991; 86: 305-8.
[53]
De Vecchis R, Ariano C, Esposito C, Giasi A, Cioppa C, Cantatrione S. In right or biventricular chronic heart failure addition of thiazides to loop diuretics to achieve a sequential blockade of the nephron is associated with increased risk of dilutional hyponatremia: Results of a case-control study. Minerva Cardioangiol 2012; 60: 517-29.
[54]
Goland S, Naugolny V, Korbut Z, Rozen I, Caspi A, Malnick S. Appropriateness and complications of the use of spironolactone in patients treated in a heart failure clinic. Eur J Intern Med 2011; 22: 424-7.
[55]
Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 2014; 170: G1-G47.
[56]
Spasovski G, Vanholder R, Allolio B, et al. Hyponatraemia diagnosis and treatment clinical practice guidelines. Nefrologia 2017; 37: 370-80.
[57]
Hoorn EJ, Zietse R. Diagnosis and treatment of hyponatremia: Compilation of the guidelines. J Am Soc Nephrol 2017; 28: 1340-9.
[58]
Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant 2014; 29(Suppl. 2): i1-i39.
[59]
Wan Y, Li L, Niu H, et al. Impact of compound hypertonic saline solution on decompensated heart failure. Int Heart J 2017; 58: 601-7.
[60]
Lafrenière G, Béliveau P, Bégin JY, et al. Effects of hypertonic saline solution on body weight and serum creatinine in patients with acute decompensated heart failure. World J Cardiol 2017; 9: 685-92.
[61]
Bikdeli B, Strait KM, Dharmarajan K, et al. Intravenous fluids in acute decompensated heart failure. JACC Heart Fail 2015; 3: 127-33.
[62]
Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med 2006; 119: 71.e71-8.
[63]
Licata G, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: Long-term effects. Am Heart J 2003; 145: 459-66.
[64]
Vinod P, Krishnappa V, Chauvin AM, Khare A, Raina R. Cardiorenal syndrome: Role of arginine vasopressin and vaptans in heart failure. Cardiol Res 2017; 8: 87-95.
[65]
Lin TE, Adams KF Jr, Patterson JH. Potential roles of vaptans in heart failure: Experience from clinical trials and considerations for optimizing therapy in target patients. Heart Fail Clin 2014; 10: 607-20.
[66]
Hashim T, Sanam K, Revilla-Martinez M, et al. Clinical characteristics and outcomes of intravenous inotropic therapy in advanced heart failure. Circ Heart Fail 2015; 8: 880-6.
[67]
Mebazaa A, Motiejunaite J, Gayat E, et al. Long-term safety of intravenous cardiovascular agents in acute heart failure: Results from the European society of cardiology heart failure long-term registry. Eur J Heart Fail 2018; 20: 332-41.
[68]
Vaduganathan M, Pallais JC, Fenves AZ, Butler J, Gheorghiade M. Serum chloride in heart failure: A salty prognosis. Eur J Heart Fail 2016; 18: 669-71.
[69]
Ghali JK, Tam SW. The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. J Card Fail 2010; 16: 419-31.
[70]
Albert NM, Nutter B, Forney J, Slifcak E, Tang WH. A randomized controlled pilot study of outcomes of strict allowance of fluid therapy in hyponatremic heart failure (salt-hf). J Card Fail 2013; 19: 1-9.
[71]
Gheorghiade M, Gottlieb SS, Udelson JE, et al. Vasopressin v(2) receptor blockade with tolvaptan versus fluid restriction in the treatment of hyponatremia. Am J Cardiol 2006; 97: 1064-7.
[72]
Allida SM, Hayward CS, Newton PJ. Thirst in heart failure: What do we know so far? Curr Opin Support Palliat Care 2018; 12: 4-9.
[73]
Sica DA. Hyponatremia and heart failure--treatment considerations. Congest Heart Fail 2006; 12: 55-60.
[74]
Goldsmith SR. Current treatments and novel pharmacologic treatments for hyponatremia in congestive heart failure. Am J Cardiol 2005; 95: 14b-23b.
[75]
Omar HR, Guglin M. Higher diuretic requirements in acute heart failure with admission hyponatraemia versus normonatraemia. Heart Lung Circ 2019. [Epub ahead of print].
[76]
Omar HR, Guglin M. Etiology of discharge hyponatremia in decompensated heart failure and normal admission na(+): Effect of diuretics. Eur J Intern Med 2018; 48: e15-7.
[77]
Gandhi S, Mosleh W, Myers RB. Hypertonic saline with furosemide for the treatment of acute congestive heart failure: A systematic review and meta-analysis. Int J Cardiol 2014; 173: 139-45.
[78]
Paterna S, Parrinello G, Amato P, et al. Tolerability and efficacy of high-dose furosemide and small-volume hypertonic saline solution in refractory congestive heart failure. Adv Ther 1999; 16: 219-28.
[79]
Okuhara Y, Hirotani S, Ando T, et al. Comparison of salt with low-dose furosemide and carperitide for treating acute decompensated heart failure: A single-center retrospective cohort study. Heart Vessels 2017; 32: 419-27.
[80]
Kazory A. Haemodialysis, not ultrafiltration, can correct hyponatraemia in heart failure. Eur J Heart Fail 2010; 12: 208.
[81]
Elisaf M, Theodorou J, Pappas C, Siamopoulos K. Successful treatment of hyponatremia with angiotensin-converting enzyme inhibitors in patients with congestive heart failure. Cardiology 1995; 86: 477-80.
[82]
Balling L, Kober L, Schou M, Torp-Pedersen C, Gustafsson F. Efficacy and safety of angiotensin-converting enzyme inhibitors in patients with left ventricular systolic dysfunction and hyponatremia. J Card Fail 2013; 19: 725-30.
[83]
Oster JR, Materson BJ. Renal and electrolyte complications of congestive heart failure and effects of therapy with angiotensin-converting enzyme inhibitors. Arch Intern Med 1992; 152: 704-10.
[84]
Baldasseroni S, Urso R, Orso F, et al. Relation between serum sodium levels and prognosis in outpatients with chronic heart failure: Neutral effect of treatment with beta-blockers and angiotensin-converting enzyme inhibitors: Data from the Italian network on congestive heart failure (in-chf database). J Cardiovasc Med 2011; 12: 723-31.
[85]
Cheungpasitporn W, Erickson SB, Rule AD, Enders F, Lieske JC. Short-term tolvaptan increases water intake and effectively decreases urinary calcium oxalate, calcium phosphate and uric acid supersaturations. J Urol 2016; 195: 1476-81.
[86]
Ali F, Guglin M, Vaitkevicius P, Ghali JK. Therapeutic potential of vasopressin receptor antagonists. Drugs 2007; 67: 847-58.
[87]
Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin v2-receptor antagonist, for hyponatremia. N Engl J Med 2006; 355: 2099-112.
[88]
Konstam MA, Gheorghiade M, Burnett JC Jr, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: The everest outcome trial. JAMA 2007; 297: 1319-31.
[89]
McGreal K, Budhiraja P, Jain N, Yu AS. Current challenges in the evaluation and management of hyponatremia. Kidney Dis 2016; 2: 56-63.
[90]
Hauptman PJ, Burnett J, Gheorghiade M, et al. Clinical course of patients with hyponatremia and decompensated systolic heart failure and the effect of vasopressin receptor antagonism with tolvaptan. J Card Fail 2013; 19: 390-7.
[91]
Felker GM, Mentz RJ, Cole RT, et al. Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. J Am Coll Cardiol 2017; 69: 1399-406.
[92]
Wu MY, Chen TT, Chen YC, et al. Effects and safety of oral tolvaptan in patients with congestive heart failure: A systematic review and network meta-analysis. PLoS One 2017; 12e0184380
[93]
Goldsmith SR, Gilbertson DT, Mackedanz SA, Swan SK. Renal effects of conivaptan, furosemide, and the combination in patients with chronic heart failure. J Card Fail 2011; 17: 982-9.
[94]
Udelson JE, Smith WB, Hendrix GH, et al. Acute hemodynamic effects of conivaptan, a dual v(1a) and v(2) vasopressin receptor antagonist, in patients with advanced heart failure. Circulation 2001; 104: 2417-23.
[95]
Annane D, Decaux G, Smith N. Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia. Am J Med Sci 2009; 337: 28-36.
[96]
Cajaiba MM, Parks WT, Fuhrer K, Randhawa PS. Evaluation of human polyomavirus bk as a potential cause of villitis of unknown etiology and spontaneous abortion. J Med Virol 2011; 83: 1031-3.
[97]
Der-Nigoghossian C, Lesch C, Berger K. Effectiveness and tolerability of conivaptan and tolvaptan for the treatment of hyponatremia in neurocritically ill patients. Pharmacotherapy 2017; 37: 528-34.
[98]
Izumi Y, Miura K, Iwao H. Therapeutic potential of vasopressin-receptor antagonists in heart failure. J Pharmacol Sci 2014; 124: 1-6.
[99]
Abraham WT, Aranda JM, Boehmer JP, et al. Rationale and design of the treatment of hyponatremia based on lixivaptan in nyha class III/IV cardiac patient evaluation (the balance) study. Clin Transl Sci 2010; 3: 249-53.
[100]
Flaegstad T, Traavik T, Kristiansen BE. Age-dependent prevalence of bk virus igg and igm antibodies measured by enzyme-linked immunosorbent assays (ELISA). J Hyg 1986; 96: 523-8.
[101]
Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology foundation/American heart association task force on practice guidelines. J Am Coll Cardiol 2013; 62: e147-239.
[102]
Doumouras BS, Lee DS, Levy WC, Alba AC. An appraisal of biomarker-based risk-scoring models in chronic heart failure: Which one is best? Curr Heart Fail Rep 2018; 15: 24-36.
[103]
Hamaguchi S, Kinugawa S, Tsuchihashi-Makaya M, et al. Hyponatremia is an independent predictor of adverse clinical outcomes in hospitalized patients due to worsening heart failure. J Cardiol 2014; 63: 182-8.
[104]
Yoo BS, Park JJ, Choi DJ, et al. Prognostic value of hyponatremia in heart failure patients: An analysis of the clinical characteristics and outcomes in the relation with serum sodium level in asian patients hospitalized for heart failure (coast) study. Korean J Intern Med 2015; 30: 460-70.
[105]
Lu DY, Cheng HM, Cheng YL, et al. Hyponatremia and worsening sodium levels are associated with long-term outcome in patients hospitalized for acute heart failure. J Am Heart Assoc 2016; 5e002668
[106]
Agostoni P, Corra U, Cattadori G, et al. Metabolic exercise test data combined with cardiac and kidney indexes, the mecki score: A multiparametric approach to heart failure prognosis. Int J Cardiol 2013; 167: 2710-8.
[107]
Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 1997; 95: 2660-7.
[108]
Levy WC, Mozaffarian D, Linker DT, et al. The seattle heart failure model: Prediction of survival in heart failure. Circulation 2006; 113: 1424-33.
[109]
Oh C, Chang HJ, Sung JM, et al. Prognostic estimation of advanced heart failure with low left ventricular ejection fraction and wide qrs interval. Korean Circ J 2012; 42: 659-67.
[110]
Alba AC, Walter SD, Guyatt GH, et al. Predicting survival in patients with heart failure with an implantable cardioverter defibrillator: The heart failure meta-score. J Card Fail 2018; 24: 735-45.
[111]
Krittanawong C, Kukin ML. Current management and future directions of heart failure with preserved ejection fraction: A contemporary review. Curr Treat Options Cardiovasc Med 2018; 20: 28.
[112]
Omar HR, Guglin M. Rise of first follow-up sodium in patients hospitalized with acute heart failure is associated with better outcomes. Int J Cardiol 2018; 269: 201-6.
[113]
Omar HR, Guglin M. Community acquired versus hospital acquired hyponatremia in acute heart failure: Association with clinical characteristics and outcomes. Int J Cardiol 2016; 225: 247-9.
[114]
Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 2017; 69: 2657-64.
[115]
Krittanawong C, Johnson KW, Hershman SG, Tang WHW. Big data, artificial intelligence, and cardiovascular precision medicine. Expert Rev Precis Med Drug Dev 2018; 3: 305-17.
[116]
Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: A practical primer. Eur Heart J 2019. [Epub ahead of print].
[http://dx.doi.org/10.1093/eurheartj/ehz056]
[117]
Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol 2008; 52: 1527-39.
[118]
Aliti GB, Rabelo ER, Clausell N, Rohde LE, Biolo A, Beck-da-Silva L. Aggressive fluid and sodium restriction in acute decompensated heart failure: A randomized clinical trial. JAMA Intern Med 2013; 173: 1058-64.
[119]
Gheorghiade M, Konstam MA, Burnett JC Jr, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: The everest clinical status trials. JAMA 2007; 297: 1332-43.
[120]
Gheorghiade M, Gattis WA, O’Connor CM, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: A randomized controlled trial. JAMA 2004; 291: 1963-71.
[121]
Ghali JK, Koren MJ, Taylor JR, et al. Efficacy and safety of oral conivaptan: A v1a/v2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J Clin Endocrinol Metab 2006; 91: 2145-52.
[122]
Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol 2007; 27: 447-57.
[123]
Konstam MA, Kiernan M, Chandler A, et al. Short-term effects of tolvaptan in patients with acute heart failure and volume overload. J Am Coll Cardiol 2017; 69: 1409-19.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 4
Year: 2019
Page: [252 - 261]
Pages: 10
DOI: 10.2174/1573403X15666190306111812
Price: $58

Article Metrics

PDF: 39
HTML: 2
EPUB: 1
PRC: 1