Lead Optimization Resources in Drug Discovery for Diabetes

Author(s): Pragya Tiwari*, Ashish Katyal, Mohd F. Khan, Ghulam Md. Ashraf*, Khurshid Ahmad*.

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 19 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Diabetes, defined as a chronic metabolic syndrome, exhibits global prevalence and phenomenal rise worldwide. The rising incidence accounts for a global health crisis, demonstrating a profound effect on low and middle-income countries, particularly people with limited healthcare facilities.

Methods: Highlighting the prevalence of diabetes and its socio-economic implications on the population across the globe, the article aimed to address the emerging significance of computational biology in drug designing and development, pertaining to identification and validation of lead molecules for diabetes treatment.

Results: The drug discovery programs have shifted the focus on in silico prediction strategies minimizing prolonged clinical trials and expenses. Despite technological advances and effective drug therapies, the fight against life-threatening, disabling disease has witnessed multiple challenges. The lead optimization resources in computational biology have transformed the research on the identification and optimization of anti-diabetic lead molecules in drug discovery studies. The QSAR approaches and ADMET/Toxicity parameters provide significant evaluation of prospective “drug-like” molecules from natural sources.

Conclusion: The science of computational biology has facilitated the drug discovery and development studies and the available data may be utilized in a rational construction of a drug ‘blueprint’ for a particular individual based on the genetic organization. The identification of natural products possessing bioactive properties as well as their scientific validation is an emerging prospective approach in antidiabetic drug discovery.

Keywords: Computational biology, diabetes, drug discovery, e-resources, quantitative structure-activity relationship, therapeutic targets.

[1]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87(1), 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[2]
Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract., 2011, 94(3), 311-321.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[3]
Zinman, B. The International Diabetes Federation World Diabetes Congress 2015 Eur Endocrinol, 2015, 11(2), p. 66.
[4]
Atlas, I.D. Belgium: international diabetes federation; 2013. International Diabetes Federation; IDF, 2017.
[5]
Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., 2014, 103(2), 137-149.
[http://dx.doi.org/10.1016/j.diabres.2013.11.002] [PMID: 24630390]
[6]
Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract., 2017, 128, 40-50.
[http://dx.doi.org/10.1016/j.diabres.2017.03.024] [PMID: 28437734]
[7]
Cho, N.; Shaw, J.; Karuranga, S.; Huang, Y. da Rocha Fer-nandes, J.; Ohlrogge, A.; Malanda, B., IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[8]
Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med., 2006, 3(11)e442
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[9]
Association, A.D. National diabetes statistics report, 2014; Centers for Disease Control, 2014.
[10]
Unwin, N.; Whiting, D.; Gan, D.; Jacqmain, O.; Ghyoot, G. IDF diabetes atlas; International Diabetes Federation, 2009.
[11]
Ramachandran, A.; Snehalatha, C.; Shetty, A.S.; Nanditha, A. Trends in prevalence of diabetes in Asian countries. World J. Diabetes, 2012, 3(6), 110-117.
[http://dx.doi.org/10.4239/wjd.v3.i6.110] [PMID: 22737281]
[12]
Tiwari, P. Recent Trends in Therapeutic Approaches for Diabetes Management: A Comprehensive Update. J. Diabetes Res., 2015.2015340838
[http://dx.doi.org/10.1155/2015/340838] [PMID: 26273667]
[13]
Aliotta, S.L.; Boling, J.; Commander, C.; Day, D.; Greenberg, L.; Lattimer, C.; Marshall, D.; Rogers, S.A. The impact of CMSA’s case management adherence guidelines and guidelines training on case manager-reported behavior change. Prof. Case Manag., 2007, 12(5), 288-295.
[http://dx.doi.org/10.1097/01.PCAMA.0000291428.99728.af] [PMID: 17885636]
[14]
Kitabchi, A.E.; Umpierrez, G.E.; Murphy, M.B.; Kreisberg, R.A. Hyperglycemic crises in adult patients with diabetes: a consensus statement from the American Diabetes Association. Diabetes Care, 2006, 29(12), 2739-2748.
[http://dx.doi.org/10.2337/dc06-9916] [PMID: 17130218]
[15]
Persaud, S.; Jones, P. Beta-cell-based therapies for Type 2 diabetes. Eur Endocrinol, 2008, 4, 36-39.
[http://dx.doi.org/10.17925/EE.2008.04.00.36]
[16]
Tiwari, P.; Ahmad, K.; Baig, M.H. Gymnema sylvestre for diabetes: from traditional herb to future’s therapeutic. Curr. Pharm. Des., 2017, 23(11), 1667-1676.
[http://dx.doi.org/10.2174/1381612823666161108162048] [PMID: 27834124]
[17]
Caron, P.R.; Mullican, M.D.; Mashal, R.D.; Wilson, K.P.; Su, M.S.; Murcko, M.A. Chemogenomic approaches to drug discovery. Curr. Opin. Chem. Biol., 2001, 5(4), 464-470.
[http://dx.doi.org/10.1016/S1367-5931(00)00229-5] [PMID: 11470611]
[18]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[19]
Burren, O.S.; Adlem, E.C.; Achuthan, P.; Christensen, M.; Coulson, R.M.; Todd, J.A. T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research. Nucleic Acids Res., 2011, 39(Database issue), D997-D1001.
[http://dx.doi.org/10.1093/nar/gkq912] [PMID: 20937630]
[20]
Rich, S.S.; Concannon, P.; Erlich, H.; Julier, C.; Morahan, G.; Nerup, J.; Pociot, F.; Todd, J.A. The type 1 diabetes genetics consortium. Ann. N. Y. Acad. Sci., 2006, 1079(1), 1-8.
[http://dx.doi.org/10.1196/annals.1375.001] [PMID: 17130525]
[21]
Agrawal, S.; Dimitrova, N.; Nathan, P.; Udayakumar, K.; Lakshmi, S.S.; Sriram, S.; Manjusha, N.; Sengupta, U. T2D-Db: an integrated platform to study the molecular basis of Type 2 diabetes. BMC Genomics, 2008, 9, 320.
[http://dx.doi.org/10.1186/1471-2164-9-320] [PMID: 18605991]
[22]
Jain Sanmati, K.; Mallick, S.; Dubey, R.; Nag, S.; Yadav, A. 2D-QSAR analysis on 4-Flouro-2-Cyanopyrrolidine deriva-tives as DPP-IV Inhibitors. J. Comput. Method Mol. Design, 2011, 1, 14-25.
[23]
Kaushik, D.; Kumar, R.; Saxena, A.K. QSAR studies of benzofuran/benzothiophene biphenyl derivatives as inhibitors of PTPase-1B. J. Pharm. Bioallied Sci., 2010, 2(1), 27-31.
[http://dx.doi.org/10.4103/0975-7406.62703] [PMID: 21814427]
[24]
Juillerat-Jeanneret, L. Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else? J. Med. Chem., 2014, 57(6), 2197-2212.
[http://dx.doi.org/10.1021/jm400658e] [PMID: 24099035]
[25]
Haffner, C.D.; McDougald, D.L.; Reister, S.M.; Thompson, B.D.; Conlee, C.; Fang, J.; Bass, J.; Lenhard, J.M.; Croom, D.; Secosky-Chang, M.B.; Tomaszek, T.; McConn, D.; Wells-Knecht, K.; Johnson, P.R. 2-Cyano-4-fluoro-1-thiovalylpyrrolidine analogues as potent inhibitors of DPP-IV. Bioorg. Med. Chem. Lett., 2005, 15(23), 5257-5261.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.050] [PMID: 16168640]
[26]
Mehta, R.S.; Prajapati, H.R.; Thakkar, D.V.; Brahmkshatriya, P.S. QSAR Study on a Series of Protein Tyrosine Phosphatase 1B Inhibitors. Int. J. Biomed. Sci., 2008, 4(4), 266-272.
[PMID: 23675100]
[27]
Sawant, S.; Nerkar, A.; Velapure, A.; Pawar, N. Design, synthesis, qsar studies and in vitro evaluation of novel triazolopiperazine based b-amino amides as dipeptidyl peptidase-IV (DPP-IV) inhibitors: Part-I.
[28]
Hemlatha, R.; Soni, L.; Gupta, A.; Kaskhedikar, S. QSAR analysis of 5-aryl thiazolidine-2, 4-diones as PPAR-α and PPAR-γ agonists. Indian J. Chem. Sect. B, 2006.
[29]
Desai, R.C.; Han, W.; Metzger, E.J.; Bergman, J.P.; Gratale, D.F.; MacNaul, K.L.; Berger, J.P.; Doebber, T.W.; Leung, K.; Moller, D.E.; Heck, J.V.; Sahoo, S.P. 5-aryl thiazolidine-2,4-diones: discovery of PPAR dual alpha/gamma agonists as antidiabetic agents. Bioorg. Med. Chem. Lett., 2003, 13(16), 2795-2798.
[http://dx.doi.org/10.1016/S0960-894X(03)00505-5] [PMID: 12873517]
[30]
Tiwari, P.; Mishra, B.N.; Sangwan, N.S. Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. BioMed Res. Int., 2014, •••2014830285
[http://dx.doi.org/10.1155/2014/830285] [PMID: 24511547]
[31]
Tiwari, P.; Sangwan, R.S. Asha; Mishra, B.N.; Sabir, F.; Sangwan, N.S., Molecular cloning and biochemical characteri-zation of a recombinant sterol 3-O-glucosyltransferase from Gymnema sylvestre R.Br. catalyzing biosynthesis of steryl glucosides. BioMed Res. Int., 2014.2014934351
[http://dx.doi.org/10.1155/2014/934351] [PMID: 25250339]
[32]
Tiwari, P.; Sharma, P.; Khan, F.; Sangwan, N.S.; Mishra, B.N.; Sangwan, R.S. Structure Activity Relationship Studies of Gymnemic Acid Analogues for Antidiabetic Activity Targeting PPARγ. Curr Comput Aided Drug Des, 2015, 11(1), 57-71.
[http://dx.doi.org/10.2174/1573409911666150610093611] [PMID: 26058590]
[33]
Walker, A.B.; Naderali, E.K.; Chattington, P.D.; Buckingham, R.E.; Williams, G. Differential vasoactive effects of the insulin sensitizers rosiglitazone (BRL 49653) and troglitazone on human small arteries in vitro. Diabetes, 1998, 47(5), 810-814.
[http://dx.doi.org/10.2337/diabetes.47.5.810] [PMID: 9588454]
[34]
Young, P.W.; Buckle, D.R.; Cantello, B.C.; Chapman, H.; Clapham, J.C.; Coyle, P.J.; Haigh, D.; Hindley, R.M.; Holder, J.C.; Kallender, H.; Latter, A.J.; Lawrie, K.W.; Mossakowska, D.; Murphy, G.J.; Roxbee Cox, L.; Smith, S.A. Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J. Pharmacol. Exp. Ther., 1998, 284(2), 751-759.
[PMID: 9454824]
[35]
Zinman, B. PPAR gamma agonists in type 2 diabetes: how far have we come in ‘preventing the inevitable’? A review of the metabolic effects of rosiglitazone. Diabetes Obes. Metab., 2001, 3(Suppl. 1), S34-S43.
[http://dx.doi.org/10.1046/j.1463-1326.2001.00033.x] [PMID: 11685828]
[36]
van de Laar, F.A. Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc. Health Risk Manag., 2008, 4(6), 1189-1195.
[http://dx.doi.org/10.2147/VHRM.S3119] [PMID: 19337532]
[37]
Khan, K.A.; Dobani, S.; Shareef, M.A. Molecular docking and preclinical studies of Gymnema sylvestre on endothelial nitric oxide synthase (ENOS) in type-2 diabetes related complications. Journal of Young Pharmacists, 2014, 6(4), 25.
[http://dx.doi.org/10.5530/jyp.2014.4.5]
[38]
Sanematsu, K.; Kusakabe, Y.; Shigemura, N.; Hirokawa, T.; Nakamura, S.; Imoto, T.; Ninomiya, Y. Molecular mechanisms for sweet-suppressing effect of gymnemic acids. J. Biol. Chem., 2014, 289(37), 25711-25720.
[http://dx.doi.org/10.1074/jbc.M114.560409] [PMID: 25056955]
[39]
Bedekar, A.; Shah, K.; Koffas, M. Natural products for type II diabetes treatment. Adv. Appl. Microbiol., 2010, 71, 21-73.
[http://dx.doi.org/10.1016/S0065-2164(10)71002-9] [PMID: 20378050]
[40]
Osonoi, T.; Saito, M.; Mochizuki, K.; Fukaya, N.; Muramatsu, T.; Inoue, S.; Fuchigami, M.; Goda, T. The α-glucosidase inhibitor miglitol decreases glucose fluctuations and inflammatory cytokine gene expression in peripheral leukocytes of Japanese patients with type 2 diabetes mellitus. Metabolism, 2010, 59(12), 1816-1822.
[http://dx.doi.org/10.1016/j.metabol.2010.06.006] [PMID: 20667563]
[41]
Moses, A.M.; Numann, P.; Miller, M. Mechanism of chlorpropamide-induced antidiuresis in man: Evidence for release of ADH and enhancement of peripheral action. Metabolism, 1973, 22(1), 59-66.
[http://dx.doi.org/10.1016/0026-0495(73)90029-2] [PMID: 4681843]
[42]
Miller, M.; Moses, A.M. Mechanism of chlorpropamide action in diabetes insipidus. J. Clin. Endocrinol. Metab., 1970, 30(4), 488-496.
[http://dx.doi.org/10.1210/jcem-30-4-488] [PMID: 5435288]
[43]
Firth, R.G.; Bell, P.M.; Rizza, R.A. Effects of tolazamide and exogenous insulin on insulin action in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med., 1986, 314(20), 1280-1286.
[http://dx.doi.org/10.1056/NEJM198605153142003] [PMID: 3517644]
[44]
Miller, W.L., Jr; Krake, J.J.; Vander Brook, M.J.; Reineke, L.M. Studies on the absorption, mechanism of action, and excretion of tolbutamide in the rat. Ann. N. Y. Acad. Sci., 1957, 71(1), 118-124.
[http://dx.doi.org/10.1111/j.1749-6632.1957.tb54582.x] [PMID: 13459207]
[45]
Inzucchi, S.E. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA, 2002, 287(3), 360-372.
[http://dx.doi.org/10.1001/jama.287.3.360] [PMID: 11790216]
[46]
Pearson, E.R.; Flechtner, I.; Njølstad, P.R.; Malecki, M.T.; Flanagan, S.E.; Larkin, B.; Ashcroft, F.M.; Klimes, I.; Codner, E.; Iotova, V.; Slingerland, A.S.; Shield, J.; Robert, J.J.; Holst, J.J.; Clark, P.M.; Ellard, S.; Søvik, O.; Polak, M.; Hattersley, A.T. Neonatal Diabetes International Collaborative Group. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med., 2006, 355(5), 467-477.
[http://dx.doi.org/10.1056/NEJMoa061759] [PMID: 16885550]
[47]
Kadhe, G.; Arasan, R.E. Advances in drug delivery of oral hypoglycemic agents. Curr Sci India, 2002, 83(12), 1539-1543.
[48]
Smits, P.; Thien, T. Cardiovascular effects of sulphonylurea derivatives. Implications for the treatment of NIDDM? Diabetologia, 1995, 38(1), 116-121.
[http://dx.doi.org/10.1007/BF02369361] [PMID: 7744216]
[49]
Basit, A.; Riaz, M.; Fawwad, A. Glimepiride: evidence-based facts, trends, and observations (GIFTS). corrected Vasc. Health Risk Manag., 2012, 8, 463-472.
[http://dx.doi.org/10.2147/VHRM.S33194] [PMID: 23028231]
[50]
DeFronzo, R.A.; Goodman, A.M. The Multicenter Metformin Study Group. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med., 1995, 333(9), 541-549.
[http://dx.doi.org/10.1056/NEJM199508313330902] [PMID: 7623902]
[51]
Forman, L.M.; Simmons, D.A.; Diamond, R.H. Hepatic failure in a patient taking rosiglitazone. Ann. Intern. Med., 2000, 132(2), 118-121.
[http://dx.doi.org/10.7326/0003-4819-132-2-200001180-00005] [PMID: 10644272]
[52]
Smith, U. Pioglitazone: mechanism of action. Int. J. Clin. Pract. Suppl., 2001, (121), 13-18.
[PMID: 11594239]
[53]
Jaeschke, H. Troglitazone hepatotoxicity: are we getting closer to understanding idiosyncratic liver injury? Toxicol. Sci., 2007, 97(1), 1-3.
[http://dx.doi.org/10.1093/toxsci/kfm021] [PMID: 17575588]
[54]
Gupta, V. Glucagon-like peptide-1 analogues: An overview. Indian J. Endocrinol. Metab., 2013, 17(3), 413-421.
[http://dx.doi.org/10.4103/2230-8210.111625] [PMID: 23869296]
[55]
Nadkarni, P.; Chepurny, O.G.; Holz, G.G. Regulation of glucose homeostasis by GLP-1. Prog. Mol. Biol. Transl. Sci., 2014, 121, 23-65.
[http://dx.doi.org/10.1016/B978-0-12-800101-1.00002-8] [PMID: 24373234]
[56]
Drucker, D.J. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care, 2003, 26(10), 2929-2940.
[http://dx.doi.org/10.2337/diacare.26.10.2929] [PMID: 14514604]
[57]
Holst, J.J. Gastric inhibitory polypeptide analogues: do they have a therapeutic role in diabetes mellitus similar to that of glucagon-like Peptide-1? BioDrugs, 2002, 16(3), 175-181.
[http://dx.doi.org/10.2165/00063030-200216030-00002] [PMID: 12102645]
[58]
Dicker, D. DPP-4 inhibitors: impact on glycemic control and cardiovascular risk factors. Diabetes Care, 2011, 34(Suppl. 2), S276-S278.
[http://dx.doi.org/10.2337/dc11-s229] [PMID: 21525468]
[59]
Domecq, J.P.; Prutsky, G.; Leppin, A.; Sonbol, M.B.; Altayar, O.; Undavalli, C.; Wang, Z.; Elraiyah, T.; Brito, J.P.; Mauck, K.F.; Lababidi, M.H.; Prokop, L.J.; Asi, N.; Wei, J.; Fidahussein, S.; Montori, V.M.; Murad, M.H. Clinical review: Drugs commonly associated with weight change: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab., 2015, 100(2), 363-370.
[http://dx.doi.org/10.1210/jc.2014-3421] [PMID: 25590213]
[60]
Ryan, G.J.; Jobe, L.J.; Martin, R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin. Ther., 2005, 27(10), 1500-1512.
[http://dx.doi.org/10.1016/j.clinthera.2005.10.009] [PMID: 16330288]
[61]
Tyagi, S.; Gupta, P.; Saini, A.S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res., 2011, 2(4), 236-240.
[http://dx.doi.org/10.4103/2231-4040.90879] [PMID: 22247890]
[62]
Lee, Y.J.; Lee, Y.J.; Han, H.J. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int. Suppl., 2007, (106), S27-S35.
[http://dx.doi.org/10.1038/sj.ki.5002383] [PMID: 17653207]
[63]
Chao, E.C.; Henry, R.R. SGLT2 inhibition--a novel strategy for diabetes treatment. Nat. Rev. Drug Discov., 2010, 9(7), 551-559.
[http://dx.doi.org/10.1038/nrd3180] [PMID: 20508640]
[64]
Erion, M.D.; van Poelje, P.D.; Dang, Q.; Kasibhatla, S.R.; Potter, S.C.; Reddy, M.R.; Reddy, K.R.; Jiang, T.; Lipscomb, W.N. MB06322 (CS-917): A potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes. Proc. Natl. Acad. Sci. USA, 2005, 102(22), 7970-7975.
[http://dx.doi.org/10.1073/pnas.0502983102] [PMID: 15911772]
[65]
van Poelje, P.D.; Potter, S.C.; Chandramouli, V.C.; Landau, B.R.; Dang, Q.; Erion, M.D. Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in Zucker diabetic fatty rats. Diabetes, 2006, 55(6), 1747-1754.
[http://dx.doi.org/10.2337/db05-1443] [PMID: 16731838]
[66]
Pirags, V.; Lebovitz, H.; Fouqueray, P. Imeglimin, a novel glimin oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes. Metab., 2012, 14(9), 852-858.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01611.x] [PMID: 22519919]
[67]
Geil, P.; Shane-McWhorter, L. Dietary supplements in the management of diabetes: potential risks and benefits. J. Am. Diet. Assoc., 2008, 108(4)(Suppl. 1), S59-S65.
[http://dx.doi.org/10.1016/j.jada.2008.01.020] [PMID: 18358258]
[68]
Hills, S.; Halban, P.A. DIAMAP: a road map for diabetes research in Europe. J. Diabetes Sci. Technol., 2011, 5(3), 794-797.
[http://dx.doi.org/10.1177/193229681100500334] [PMID: 21722595]
[69]
Keller, M.P.; Choi, Y.; Wang, P.; Davis, D.B.; Rabaglia, M.E.; Oler, A.T.; Stapleton, D.S.; Argmann, C.; Schueler, K.L.; Edwards, S.; Steinberg, H.A.; Chaibub Neto, E.; Kleinhanz, R.; Turner, S.; Hellerstein, M.K.; Schadt, E.E.; Yandell, B.S.; Kendziorski, C.; Attie, A.D. A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res., 2008, 18(5), 706-716.
[http://dx.doi.org/10.1101/gr.074914.107] [PMID: 18347327]
[70]
Zeggini, E.; Weedon, M.N.; Lindgren, C.M.; Frayling, T.M.; Elliott, K.S.; Lango, H.; Timpson, N.J.; Perry, J.R.; Rayner, N.W.; Freathy, R.M.; Barrett, J.C.; Shields, B.; Morris, A.P.; Ellard, S.; Groves, C.J.; Harries, L.W.; Marchini, J.L.; Owen, K.R.; Knight, B.; Cardon, L.R.; Walker, M.; Hitman, G.A.; Morris, A.D.; Doney, A.S.; McCarthy, M.I.; Hattersley, A.T.; Hattersley, A.T. Wellcome Trust Case Control Consortium (WTCCC). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science, 2007, 316(5829), 1336-1341.
[http://dx.doi.org/10.1126/science.1142364] [PMID: 17463249]
[71]
Lim, J.E.; Hong, K.W.; Jin, H.S.; Kim, Y.S.; Park, H.K.; Oh, B. Type 2 diabetes genetic association database manually curated for the study design and odds ratio. BMC Med. Inform. Decis. Mak., 2010, 10, 76.
[http://dx.doi.org/10.1186/1472-6947-10-76] [PMID: 21190593]
[72]
Rich, S.S.; Concannon, P.; Erlich, H.; Julier, C.; Morahan, G.; Nerup, J.; Pociot, F.; Todd, J.A. The Type 1 Diabetes Genetics Consortium. Ann. N. Y. Acad. Sci., 2006, 1079, 1-8.
[http://dx.doi.org/10.1196/annals.1375.001] [PMID: 17130525]
[73]
Begum, M.; Lewison, G.; Sommariva, S.; Ciani, O.; Tarricone, R.; Sullivan, R. European diabetes research and its funding, 2002-2013. Diabet. Med., 2017, 34(10), 1354-1360.
[http://dx.doi.org/10.1111/dme.13411] [PMID: 28636762]
[74]
Wild, S.; Fischbacher, C.; McKnight, J. on Behalf of the Scottish Diabetes Research Network Epidemiology Group. Using Large Diabetes Databases for Research. J. Diabetes Sci. Technol., 2016, 10(5), 1073-1078.
[http://dx.doi.org/10.1177/1932296816645120] [PMID: 27127207]
[75]
Bergene, E.H.; Nordeng, H.; Rø, T.B.; Steinsbekk, A. Requests for new oral antibiotic prescriptions in children within 2 days: a Norwegian population-based study. Fam. Pract., 2018, 35(6), 690-697.
[http://dx.doi.org/10.1093/fampra/cmy033] [PMID: 29746693]
[76]
Davidson, J.A.; Parente, E.B.; Gross, J.L. Incretin mimetics and dipeptidyl peptidase-4 inhibitors: innovative treatment therapies for type 2 diabetes. Arq. Bras. Endocrinol. Metabol, 2008, 52(6), 1039-1049.
[http://dx.doi.org/10.1590/S0004-27302008000600016] [PMID: 18820816]
[77]
Piattelli, A.; Artese, L.; Penitente, E.; Iaculli, F.; Degidi, M.; Mangano, C.; Shibli, J.A.; Coelho, P.G.; Perrotti, V.; Iezzi, G. Osteocyte density in the peri-implant bone of implants retrieved after different time periods (4 weeks to 27 years). J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(2), 239-243.
[http://dx.doi.org/10.1002/jbm.b.33000] [PMID: 24106071]
[78]
Ross, S.A.; Ekoé, J.M. Incretin agents in type 2 diabetes. Can. Fam. Physician, 2010, 56(7), 639-648.
[PMID: 20631270]
[79]
Ahrén, B.; Schmitz, O. GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm. Metab. Res., 2004, 36(11-12), 867-876.
[http://dx.doi.org/10.1055/s-2004-826178] [PMID: 15655721]
[80]
Bogacka, I.; Xie, H.; Bray, G.A.; Smith, S.R. The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care, 2004, 27(7), 1660-1667.
[http://dx.doi.org/10.2337/diacare.27.7.1660] [PMID: 15220243]
[81]
Verspohl, E.J. Novel pharmacological approaches to the treatment of type 2 diabetes. Pharmacol. Rev., 2012, 64(2), 188-237.
[http://dx.doi.org/10.1124/pr.110.003319] [PMID: 22407617]
[82]
Schmitz, O.; Brock, B.; Rungby, J. Amylin agonists: a novel approach in the treatment of diabetes. Diabetes, 2004, 53(Suppl. 3), S233-S238.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S233] [PMID: 15561917]
[83]
Roth, J.D.; Erickson, M.R.; Chen, S.; Parkes, D.G. GLP-1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities. Br. J. Pharmacol., 2012, 166(1), 121-136.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01537.x] [PMID: 21671898]
[84]
Johnson, T.O.; Ermolieff, J.; Jirousek, M.R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov., 2002, 1(9), 696-709.
[http://dx.doi.org/10.1038/nrd895] [PMID: 12209150]
[85]
Gazzerro, P.; Proto, M.C.; Gangemi, G.; Malfitano, A.M.; Ciaglia, E.; Pisanti, S.; Santoro, A.; Laezza, C.; Bifulco, M. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol. Rev., 2012, 64(1), 102-146.
[http://dx.doi.org/10.1124/pr.111.004994] [PMID: 22106090]
[86]
Park, S.J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.; Ke, H.; Rehmann, H.; Taussig, R.; Brown, A.L.; Kim, M.K.; Beaven, M.A.; Burgin, A.B.; Manganiello, V.; Chung, J.H. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 2012, 148(3), 421-433.
[http://dx.doi.org/10.1016/j.cell.2012.01.017] [PMID: 22304913]
[87]
Yoshizaki, T.; Milne, J.C.; Imamura, T.; Schenk, S.; Sonoda, N.; Babendure, J.L.; Lu, J.C.; Smith, J.J.; Jirousek, M.R.; Olefsky, J.M. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol., 2009, 29(5), 1363-1374.
[http://dx.doi.org/10.1128/MCB.00705-08] [PMID: 19103747]
[88]
Miller, B.R.; Nguyen, H.; Hu, C.J.; Lin, C.; Nguyen, Q.T. New and emerging drugs and targets for type 2 diabetes: reviewing the evidence. Am. Health Drug Benefits, 2014, 7(8), 452-463.
[PMID: 25558307]
[89]
Nair, S.; Wilding, J.P. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J. Clin. Endocrinol. Metab., 2010, 95(1), 34-42.
[http://dx.doi.org/10.1210/jc.2009-0473] [PMID: 19892839]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 6
Year: 2019
Page: [754 - 774]
Pages: 21
DOI: 10.2174/1871530319666190304121826
Price: $58

Article Metrics

PDF: 29
HTML: 2
EPUB: 1
PRC: 1