Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Correlation between in vitro and in vivo Data of Radiolabeled Peptide for Tumor Targeting

Author(s): Soghra Farzipour and Seyed Jalal Hosseinimehr*

Volume 19, Issue 12, 2019

Page: [950 - 960] Pages: 11

DOI: 10.2174/1389557519666190304120011

Price: $65

Abstract

Tumor-targeting peptides have been generally developed for the overexpression of tumor specific receptors in cancer cells. The use of specific radiolabeled peptide allows tumor visualization by single photon emission computed tomography (SPECT) and positron emission tomography (PET) tools. The high affinity and specific binding of radiolabeled peptide are focusing on tumoral receptors. The character of the peptide itself, in particular, its complex molecular structure and behaviors influence on its specific interaction with receptors which are overexpressed in tumor. This review summarizes various strategies which are applied for the expansion of radiolabeled peptides for tumor targeting based on in vitro and in vivo specific tumor data and then their data were compared to find any correlation between these experiments. With a careful look at previous studies, it can be found that in vitro unblock-block ratio was unable to correlate the tumor to muscle ratio and the success of radiolabeled peptide for in vivo tumor targeting. The introduction of modifiers’ approaches, nature of peptides, and type of chelators and co-ligands have mixed effect on the in vitro and in vivo specificity of radiolabeled peptides.

Keywords: Radiopharmaceutical, 99mTc, peptide, radiolabeled, tumor, SPECT.

Graphical Abstract
[1]
Li, L.; Neaves, W.B. Normal stem cells and cancer stem cells: The niche matters. Cancer Res., 2006, 66(9), 4553-4557.
[2]
Achilefu, S.; Dorshow, R.B.; Bugaj, J.E.; Rajagopalan, R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest. Radiol., 2000, 35(8), 479-485.
[3]
Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. , 2004, 101(36), 13306-13311.
[4]
Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev., 2003, 24(4), 389-427.
[5]
Okarvi, S. Peptide-based radiopharmaceuticals and cytotoxic conjugates: Potential tools against cancer. Cancer Treat. Rev., 2008, 34(1), 13-26.
[6]
Qu, T.; Wang, Y.; Zhu, Z.; Rusckowski, M.; Hnatowich, D. Different chelators and different peptides together influence the in vitro and mouse in vivo properties of 99Tcm. Nucl. Med. Commun., 2001, 22(2), 203-215.
[7]
Pauwels, E.; Welling, M.; Feitsma, R.; Atsma, D.; Nieuwenhuizen, W. The labeling of proteins and LDL with 99mTc: A new direct method employing KBH4 and stannous chloride. Nucl. Med. Biol., 1993, 20(7), 825-833.
[8]
Fani, M.; Maecke, H.; Okarvi, S. Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics, 2012, 2(5), 481.
[9]
Jamous, M.; Haberkorn, U.; Mier, W. Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules, 2013, 18(3), 3379-3409.
[10]
Decristoforo, C.; Mather, S. The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q. J. Nucl. Med. Mol. Imaging, 2002, 46(3), 195.
[11]
Mather, S.J. Design of radiolabelled ligands for the imaging and treatment of cancer. Mol. Biosyst., 2007, 3(1), 30-35.
[12]
Deutscher, S.L. Phage display in molecular imaging and diagnosis of cancer. Chem. Rev., 2010, 110(5), 3196-3211.
[13]
Jung, E.; Lee, N.K.; Kang, S-K.; Choi, S-H.; Kim, D.; Park, K.; Choi, K.; Choi, Y-J.; Jung, D.H. Identification of tissue-specific targeting peptide. J. Comput. Aided Mol. Des., 2012, 26(11), 1267-1275.
[14]
Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J. Radiolabelled peptides for oncological diagnosis. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(1), 78-92.
[15]
Reubi, J.; Waser, B.; Schaer, J-C.; Laissue, J.A. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med., 2001, 28(7), 836-846.
[16]
Viguerie, N.; Tahiri-Jouti, N.; Esteve, J-P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A. Functional somatostatin receptors on a rat pancreatic acinar cell line. Am. J. Physiol. Gastrointest. Liver Physiol., 1988, 255(1), G113-G120.
[17]
Lantry, L.E.; Cappelletti, E.; Maddalena, M.E.; Fox, J.S.; Feng, W.; Chen, J.; Thomas, R.; Eaton, S.M.; Bogdan, N.J.; Arunachalam, T. ^1^7^7Lu-AMBA: Synthesis and characterization of a selective^ 1^7^7Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J. Nucl. Med., 2006, 47(7), 1144.
[18]
Reubi, J.C.; Schaer, J-C.; Waser, B. Cholecystokinin (CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res., 1997, 57(7), 1377-1386.
[19]
Zhang, X.; Xiong, Z.; Wu, Y.; Cai, W.; Tseng, J.R.; Gambhir, S.S.; Chen, X. Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J. Nucl. Med., 2006, 47(1), 113.
[20]
Göke, R.; Oltmer, B.; Sheikh, S.P.; Göke, B. Solubilization of active GLP-1 (7-36) amide receptors from RINm5F plasma membranes. FEBS Lett., 1992, 300(3), 232-236.
[21]
Siegrist, W.; Solca, F.; Stutz, S.; Giuffrè, L.; Carrel, S.; Girard, J.; Eberle, A.N. Characterization of receptors for α-melanocyte-stimulating hormone on human melanoma cells. Cancer Res., 1989, 49(22), 6352-6358.
[22]
Emons, G.; Ortmann, O.; Becker, M.; Irmer, G.; Springer, B.; Laun, R.; Hölzel, F.; Schulz, K-D.; Schally, A.V. High affinity binding and direct anti-proliferative effects of LHRH analogues in human ovarian cancer cell lines. Cancer Res., 1993, 53(22), 5439-5446.
[23]
Kim, H-Y.; Hwang, J-Y.; Oh, Y-S.; Kim, S-W.; Lee, H-J.; Yun, H-J.; Kim, S.; Yang, Y-J.; Jo, D-Y. Differential effects of CXCR4 antagonists on the survival and proliferation of myeloid leukemia cells in vitro. Korean J. Hematol., 2011, 46(4), 244-252.
[24]
Amar, S.; Kitabgi, P.; Vincent, J-P. Activation of phosphatidylinositol turnover by neurotensin receptors in the human colonic adenocarcinoma cell line HT29. FEBS Lett., 1986, 201(1), 31-36.
[25]
Körner, M.; Reubi, J.C. NPY receptors in human cancer: A review of current knowledge. Peptides, 2007, 28(2), 419-425.
[26]
Le Joncour, V.; Laakkonen, P. Targeting peptides, a swiss-army knife against cancer. Amino Acids Peptid. Proteins, 2017, •••, 280-319.
[27]
Hu, L.Y.; Kelly, K.A.; Sutcliffe, J.L. High-throughput approaches to the development of molecular imaging agents. Mol. Imaging Biol., 2017, 19(2), 163-182.
[28]
Antunes, P.; Ginj, M.; Walter, M.A.; Chen, J.; Reubi, J-C.; Maecke, H.R. Influence of different spacers on the biological profile of a DOTA− Somatostatin analogue. Bioconjug. Chem., 2007, 18(1), 84-92.
[29]
Fani, M.; Maecke, H.R. Radiopharmaceutical development of radiolabelled peptides. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(1), 11-30.
[30]
de Jong, M.; Kwekkeboom, D.; Valkema, R.; Krenning, E.P. Radiolabelled peptides for tumour therapy: Current status and future directions. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(3), 463-469.
[31]
Chatzisideri, T.; Leonidis, G.; Sarli, V. Cancer-targeted delivery systems based on peptides. Future Med. Chem., 2018, 10(18), 2201-2226.
[32]
Bajzer, Z.; Myers, A.; Vuk-Pavlović, S. Binding, internalization, and intracellular processing of proteins interacting with recycling receptors. A kinetic analysis. J. Biol. Chem., 1989, 264(23), 13623-13631.
[33]
Reilly, R.M. Monoclonal antibody and peptide-targeted radiotherapy of cancer; John Wiley & Sons, 2010.
[34]
Hulme, E.C.; Trevethick, M.A. Ligand binding assays at equilibrium: Validation and interpretation. Br. J. Pharmacol., 2010, 161(6), 1219-1237.
[35]
Hein, P.; Michel, M.C.; Leineweber, K.; Wieland, T.; Wettschureck, N.; Offermanns, S. Receptor and binding studies. In: Practical Methods in Cardiovascular Research; Springer, 2005; pp. 723-783.
[36]
Hanfelt, J.J. Statistical approaches to experimental design and data analysis of in vivo studies. Breast Cancer Res. Treat., 1997, 46(2-3), 279-302.
[37]
Qian, X.; Peng, X-H.; Ansari, D.O.; Yin-Goen, Q.; Chen, G.Z.; Shin, D.M.; Yang, L.; Young, A.N.; Wang, M.D.; Nie, S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol., 2008, 26(1), 83.
[38]
Liu, S.; Edwards, D.S. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2235-2268.
[39]
Anderson, C.J.; Welch, M.J. Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem. Rev., 1999, 99(9), 2219-2234.
[40]
Hosseinimehr, S.J.; Tolmachev, V.; Orlova, A. Liver uptake of radiolabeled targeting proteins and peptides: Considerations for targeting peptide conjugate design. Drug Discov. Today, 2012, 17(21-22), 1224-1232.
[41]
Nikolopoulou, A.; Maina, T.; Sotiriou, P.; Cordopatis, P.; Nock, B.A. Tetraamine‐modified octreotide and octreotate: Labeling with 99mTc and preclinical comparison in AR4‐2J cells and AR4‐2J tumor‐bearing mice. J. Pept. Sci.: Off. Pub. Eur. Pept. Soc., 2006, 12(2), 124-131.
[42]
Maina, T.; Nock, B.; Nikolopoulou, A.; Sotiriou, P.; Loudos, G.; Maintas, D.; Cordopatis, P.; Chiotellis, E. [99m Tc] Demotate, a new 99m Tc-based [Tyr 3] octreotate analogue for the detection of somatostatin receptor-positive tumours: Synthesis and preclinical results. Eur. J. Nucl. Med. Mol. Imaging, 2002, 29(6), 742-753.
[43]
Erfani, M.; Shafiei, M.; Mazidi, M.; Goudarzi, M. Preparation and biological evaluation of [99mTc/EDDA/Tricine/HYNIC0, BzThi3]-octreotide for somatostatin receptor-positive tumor imaging. Cancer Biother. Radiopharm., 2013, 28(3), 240-247.
[44]
Nock, B.A.; Nikolopoulou, A.; Galanis, A.; Cordopatis, P.; Waser, B.; Reubi, J-C.; Maina, T. Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: A preclinical study. J. Med. Chem., 2005, 48(1), 100-110.
[45]
Cescato, R.; Maina, T.; Nock, B.; Nikolopoulou, A.; Charalambidis, D.; Piccand, V.; Reubi, J.C. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J. Nucl. Med., 2008, 49(2), 318.
[46]
Yu, Z.; Carlucci, G.; Ananias, H.J.; Dierckx, R.A.; Liu, S.; Helfrich, W.; Wang, F.; de Jong, I.J.; Elsinga, P.H. Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer. Amino Acids, 2013, 44(2), 543-553.
[47]
Däpp, S.; Garayoa, E.G.; Maes, V.; Brans, L.; Tourwé, D.A.; Müller, C.; Schibli, R. PEGylation of 99mTc-labeled bombesin analogues improves their pharmacokinetic properties. J. Nucl. Med. Biol., 2011, 38(7), 997-1009.
[48]
Römhild, K.; Fischer, C.A.; Mindt, T.L. Glycated 99mTc‐tricarbonyl‐labeled peptide conjugates for tumor targeting by “click‐to‐chelate”. ChemMedChem, 2017, 12(1), 66-74.
[49]
de Barros, A.L.B. das Graças Mota, L.; de Aguiar Ferreira, C.; Corrêa, N.C.R.; de Góes, A.M.; Oliveira, M.C.; Cardoso, V.N. 99mTc-labeled bombesin analog for breast cancer identification. J. Radioanal. Nucl. Chem., 2013, 295(3), 2083-2090.
[50]
Fuscaldi, L.L.; de Barros, A.L.B.; de Paula Santos, C.R.; de Souza, C.M.; Cassali, G.D.; de Oliveira, M.C.; Fernandes, S.O.A.; Cardoso, V.N. Evaluation of the optimal LNCaP prostate tumour developmental stage to be assessed by 99mTc-HYNIC-βAla-Bombesin (7-14) in an experimental model. J. Radioanal. Nucl. Chem., 2014, 300(2), 801-807.
[51]
De, K.; Banerjee, I.; Sinha, S.; Ganguly, S. Synthesis and exploration of novel radiolabeled bombesin peptides for targeting receptor positive tumor. Peptides, 2017, 89, 17-34.
[52]
Bouziotis, P.; Gourni, E.; Patsis, G.; Psimadas, D.; Zikos, C.; Fani, M.; Xanthopoulos, S.; Loudos, G.; Paravatou-Petsotas, M.; Livaniou, E. Radiochemical and radiobiological assessment of a pyridyl-S-cysteine functionalized bombesin derivative labeled with the 99mTc (CO) 3+ core. Bioorg. Med. Chem., 2013, 21(21), 6699-6707.
[53]
Raposinho, P.D.; Correia, J.D.; Alves, S.; Botelho, M.F.; Santos, A.C.; Santos, I.A. 99mTc (CO) 3-labeled pyrazolyl–α-melanocyte-stimulating hormone analog conjugate for melanoma targeting. J. Nucl. Med. Biol., 2008, 35(1), 91-99.
[54]
Morais, M.; Oliveira, B.L.; Correia, J.O.D.; Oliveira, M.C.; Jiménez, M.A.; Santos, I.; Raposinho, P.D. Influence of the bifunctional chelator on the pharmacokinetic properties of 99mTc (CO) 3-labeled cyclic α-melanocyte stimulating hormone analog. J. Med. Chem., 2013, 56(5), 1961-1973.
[55]
Shamshirian, D.; Erfani, M.; Beiki, D.; Hajiramazanali, M.; Fallahi, B.A. 99mTc-tricine-HYNIC-labeled peptide targeting the melanocortin-1 receptor for melanoma imaging. Iran. J. Pharm. Res., 2016, 15(3), 349.
[56]
von Guggenberg, E.; Sallegger, W.; Helbok, A.; Ocak, M.; King, R.; Mather, S.J.; Decristoforo, C. Cyclic minigastrin analogues for gastrin receptor scintigraphy with technetium-99m: Preclinical evaluation. J. Med. Chem., 2009, 52(15), 4786-4793.
[57]
Von Guggenberg, E.; Dietrich, H.; Skvortsova, I.; Gabriel, M.; Virgolini, I.; Decristoforo, C. 99m Tc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(8), 1209-1218.
[58]
Laverman, P.; Béhé, M.; Oyen, W.J.; Willems, P.H.; Corstens, F.H.; Behr, T.M.; Boerman, O.C. Two technetium-99m-labeled cholecystokinin-8 (CCK8) peptides for scintigraphic imaging of CCK receptors. Bioconjug. Chem., 2004, 15(3), 561-568.
[59]
Alves, S.; Correia, J.D.; Gano, L.; Rold, T.L.; Prasanphanich, A.; Haubner, R.; Rupprich, M.; Alberto, R.; Decristoforo, C.; Santos, I. In vitro and in vivo evaluation of a novel 99mTc (CO) 3-pyrazolyl conjugate of cyclo-(Arg-Gly-Asp-d-Tyr-Lys). Bioconjug. Chem., 2007, 18(2), 530-537.
[60]
Jung, K-H.; Lee, K-H.; Paik, J-Y.; Ko, B-H.; Bae, J-S.; Lee, B.C.; Sung, H.J.; Kim, D.H.; Choe, Y.S.; Chi, D.Y. Favorable biokinetic and tumor-targeting properties of 99mTc-labeled glucosamino RGD and effect of paclitaxel therapy. J. Nucl. Med., 2006, 47(12), 2000-2007.
[61]
Rezazadeh, F.; Sadeghzadeh, N.; Abedi, S.M.; Abediankenari, S. 99m Tc-D (LPR): A novel retro-inverso peptide for VEGF receptor − 1 targeted tumor imaging. J. Nucl. Med. Biol., 2018, 62-63, 54-62.
[62]
Vats, K.; Satpati, D.; Sharma, R.; Sarma, H.D.; Banerjee, S. Synthesis and comparative in vivo evaluation of 99mTc (CO) 3‐labeled PEGylated and non‐PEG ylated cRGDfK peptide monomers. Chem. Biol. Drug Des., 2017, 89(3), 371-378.
[63]
Liu, Y.; Lan, X.; Wu, T.; Lang, J.; Jin, X.; Sun, X.; Wen, Q.; An, R. 99mTc-labeled SWL specific peptide for targeting EphA2 receptor. J. Nucl. Med. Biol., 2014, 41(6), 450-456.
[64]
Xu, X.; Zhang, J.; Hu, S.; He, S.; Bao, X.; Ma, G.; Luo, J.; Cheng, J.; Zhang, Y. 99mTc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen. J. Nucl. Med. Biol., 2017, 48, 69-75.
[65]
Ferro-Flores, G.; Luna-Gutiérrez, M.; Ocampo-García, B.; Santos-Cuevas, C.; Azorín-Vega, E.; Jiménez-Mancilla, N.; Orocio-Rodríguez, E.; Davanzo, J.; García-Pérez, F.O. Clinical translation of a PSMA inhibitor for 99mTc-based SPECT. J. Nucl. Med. Biol., 2017, 48, 36-44.
[66]
Li, Y.; Hu, Y.; Xiao, J.; Liu, G.; Li, X.; Zhao, Y.; Tan, H.; Shi, H.; Cheng, D. Investigation of SP94 peptide as a specific probe for hepatocellular carcinoma imaging and therapy. Sci. Rep., 2016, 6, 33511.
[67]
Haddad Zahmatkesh, M.; Abedi, S.M.; Hosseinimehr, S.J. Preparation and biological evaluation of 99mTc-HYNIC-(Ser) 3-D4 peptide for targeting and imaging of non-small-cell lung cancer. Future Oncol., 2017, 13(10), 893-905.
[68]
Haddad Zahmatkesh, M. MohammadAbedi, S.; Jalal Hosseinimehr, S. 99mTc-HYNIC-D4 Peptide: A new small radiolabeled peptide for no small cell lung tumor targeting. Anticancer Agents Med. Chem.: Formerly. Curr. Med. Chem. Anticancer Agents, 2017, 17(5), 734-740.
[69]
Kazemi, Z.; Zahmatkesh, M.H.; Abedi, S.M.; Hosseinimehr, S.J. Biological evaluation of 99mTc-HYNIC-EDDA/tricine-(Ser) 3-D4 peptide for tumor targeting. Curr. Radiopharm., 2017, 10(2), 123-130.
[70]
Sabahnoo, H.; Noaparast, Z.; Abedi, S.M.; Hosseinimehr, S.J. New small 99m Tc-labeled peptides for HER2 receptor imaging. Eur. J. Med. Chem., 2017, 127, 1012-1024.
[71]
Torabizadeh, S.A.; Abedi, S.M.; Noaparast, Z.; Hosseinimehr, S.J. Comparative assessment of a 99mTc labeled H1299. 2-HYNIC peptide bearing two different co-ligands for tumor-targeted imaging. Bioorg. Med. Chem., 2017, 25(9), 2583-2592.
[72]
Hosseinimehr, S.; Ahmadpour, S.; Noaparast, Z.; Abedi, S. 99mTc-(tricine)-HYNIC-Lys-FROP Peptide for Breast Tumor Targeting. Anticancer. Agents Med. Chem., 2018, 18(9), 1295-1302.
[73]
Ahmadpour, S.; Noaparast, Z.; Abedi, S.M.; Hosseinimehr, S.J. 99m Tc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging. J. Biomed. Sci., 2018, 25(1), 17.
[74]
Shaghaghi, Z.; Abedi, S.M.; Hosseinimehr, S.J. 99mTc‐HYNIC‐(Ser) 3‐J18 peptide: A radiotracer for non‐small‐cell lung cancer targeting. Chem. Biol. Drug Des., 2018, 92(1), 1214-1220.
[75]
Shaghaghi, Z.; Abedi, S.M.; Hosseinimehr, S.J. Tricine co-ligand improved the efficacy of 99m Tc-HYNIC-(Ser) 3-J18 peptide for targeting and imaging of non-small-cell lung cancer. Biomed. Pharmacother., 2018, 104, 325-331.
[76]
Rahmanian, N.; Hosseinimehr, S.J.; Khalaj, A.; Noaparast, Z.; Abedi, S.M.; Sabzevari, O. 99m Tc-radiolabeled GE11-modified peptide for ovarian tumor targeting. DARU J. Pharm. Sci., 2017, 25(1), 13.
[77]
Rahmanian, N.; Hosseinimehr, S.J.; Khalaj, A.; Noaparast, Z.; Abedi, S.M.; Sabzevari, O. 99m Tc labeled HYNIC-EDDA/tricine-GE11 peptide as a successful tumor targeting agent. Med. Chem. Res., 2018, 27(3), 890-902.
[78]
Khodadust, F.; Ahmadpour, S.; Aligholikhamseh, N.; Abedi, S.M.; Hosseinimehr, S.J. An improved 99mTc-HYNIC-(Ser) 3-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor. Eur. J. Med. Chem., 2018, 144, 767-773.
[79]
Aligholikhamseh, N.; Ahmadpour, S.; Khodadust, F.; Abedi, S.M.; Hosseinimehr, S.J. 99mTc-HYNIC-(Ser) 3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor. Radiochim. Acta, 2018, 106(7), 601-609.
[80]
Mikaeili, A.; Erfani, M.; Sabzevari, O. Synthesis and evaluation of a 99mTc-labeled chemokine receptor antagonist peptide for imaging of chemokine receptor expressing tumors. J. Nucl. Med. Biol., 2017, 54, 10-17.
[81]
Zhang, X.; You, L.; Chen, S.; Gao, M.; Guo, Z.; Du, J.; Lu, J.; Zhang, X. Development of a novel 99mTc‐labeled small molecular antagonist for CXCR4 positive tumor imaging. J. Labelled Comp. Radiopharm., 2018, 61(5), 438-446.
[82]
Von Guggenberg, E.; Behe, M.; Behr, T.; Saurer, M.; Seppi, T.; Decristoforo, C. 99mTc-labeling and in vitro and in vivo evaluation of HYNIC- and (Nα-His) acetic acid-modified [D-Glu1]-minigastrin. Bioconjug. Chem., 2004, 15(4), 864-871.
[83]
García Garayoa, E.; Schweinsberg, C.; Maes, V.; Brans, L.; Blauenstein, P.; Tourwé, D.A.; Schibli, R.; Schubiger, P.A. Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc (CO) 3]-core. Bioconjug. Chem., 2008, 19(12), 2409-2416.
[84]
Akizawa, H.; Arano, Y.; Mifune, M.; Iwado, A.; Saito, Y.; Mukai, T.; Uehara, T.; Ono, M.; Fujioka, Y.; Ogawa, K. Effect of molecular charges on renal uptake of 111In-DTPA-conjugated peptides. J. Nucl. Med. Biol., 2001, 28(7), 761-768.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy