Synergistic Effect of Novel EGFR Inhibitor AZD8931 and p38α siRNA in Lung Adenocarcinoma Cancer Cells

Author(s): Habib Zarredar , Safar Farajnia* , Khalil Ansarin , Behzad Baradaran , Maryam Aria , Milad Asadi .

Journal Name: Anti-Cancer Agents in Medicinal Chemistry

Volume 19 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Lung cancer is the leading cause of cancer-related death with less than 5-year survival rate for both men and women worldwide. EGFR and MAPK signaling pathways have a critical role in proliferation and progression of various cancers, including lung cancer. P38 map kinase plays different role in various tissue hence showing a tissue-dependent behavior. It acts as an oncogene in some tissues while plays as tumor suppressor in some other tissues. The aim of this study was to investigate the combined effect of P38 αspecific siRNA and EGFR inhibitor on apoptosis and proliferation of A549 lung cancer cell line.

Objective: This article is dedicated to the synergistic effect of novel EGFR inhibitor AZD8931 and P38 α siRNA in lung adenocarcinoma cancer cells proliferation and apoptosis.

Methods and Materials: The A549 lung cancer cells were treated with P38 α- siRNA and EGFR inhibitor alone or in combination. The cytotoxic effects of P38 α- siRNA and EGFR inhibitor were determined using MTT assay. Relative P38 α and EGFR mRNA levels were measured by QRT-PCR. Induction of apoptosis were measured by FACS analysis.

Results: The expression of mRNA related to P38 α, EGFR, and Her2 genes was reduced to 23.4%, 52.4%, and 75, respectively, after treatment of their inhibitors. Also, MTT assay showed that the cell viability after treatment with p38 α SiRNA, EGFR inhibitor and their combination was reduced to 51.02%, 48.9%, and 25.11%, respectively. FACS results indicated that p38 α siRNA, EGFR inhibitor and their combination, reduced the population of live cells to 49.5%, 32.2% and 14.3% in comparison to the population of untreated control cells (99.5%).

Conclusion: The results of this study indicated that p38 α and EGFR might play an important role in the development and growth of lung cancer and might be a potential therapeutic target for the treatment of lung cancer.

Keywords: P38 α, EHGR inhibitor, target therapy, siRNA, lung cancer, Gene silencing, EGFR.

[1]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[2]
Ali, I.; Haque, A.; Saleem, K.; Hsieh, M.F. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies. Bioorg. Med. Chem., 2013, 21(13), 3808-3820.
[3]
Ali, I.; Wani, W.A.; Haque, A.; Saleem, K. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs. Future Med. Chem., 2013, 5(8), 961-978.
[4]
Ali, I.; Wani, W.A.; Saleem, K.; Haque, A. Platinum compounds: A hope for future cancer chemotherapy. Anticancer. Agents Med. Chem., 2013, 13(2), 296-306.
[5]
Ali, I.; Wani, W.A.; Saleem, K.; Hseih, M-F. Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents. Polyhedron, 2013, 56, 134-143.
[6]
Ali, I.; Lone, M.N.; Alothman, Z.A.; Alwarthan, A. Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies. J. Mol. Liq., 2017, 234, 391-402.
[7]
Ali, I.; Lone, M.N.; Hsieh, M-F. N-Substituted (substituted-5-benzylidine) thiazolidine-2, 4-diones: Crystal structure, in silico, DNA binding and anticancer studies. Biointerf. Res. App. Chem, 2016, 6(4), 1356-1379.
[8]
Ali, P.I.; Saleem, K.; Aboul-Enein, H.; Rather, A.; Imran, D. Social aspects of cancer genesis. Cancer Ther., 2011, 8, 6-19.
[9]
Zarredar, H.; Ansarin, K.; Baradaran, B.; Ahdi Khosroshahi, S.; Farajnia, S. Potential molecular targets in the treatment of lung cancer using siRNA technology. Cancer Invest., 2018, 36(1), 37-58.
[10]
Zarredar, H.; Ansarin, K.; Baradaran, B.; Shekari, N.; Eyvazi, S.; Safari, F.; Farajnia, S. Critical micrornas in lung cancer: Recent advances and potential applications. Anticancer. Agents Med. Chem., 2018, 18(14), 1991-2005.
[11]
Ali, I. Nano Anti-cancer drugs: Pros and cons and future perspectives. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[12]
Imran, A.; Waseem, A.W.; Kishwar, S.; Ashanul, H. Thalidomide: A banned drug resurged into future anticancer drug. Curr. Drug Ther., 2012, 7(1), 13-23.
[13]
Ali, P.I. Rahisuddin; Saleem, K.; Haque, A.; El Azzouni, A. Natural products: Human friendly anti-cancer medications. Egypt Pharm. J., 2010, 9(2), 133-179.
[14]
Ali, I.; Saleem, K.; Wesselinova, D.; Haque, A. Synthesis, DNA binding, hemolytic, and anti-cancer assays of curcumin I-based ligands and their ruthenium(III) complexes. Med. Chem. Res., 2013, 22(3), 1386-1398.
[15]
Kishwar, S.; Waseem, A.; Ashanul, H.; Archana, M.; Imran, A. Nanodrugs: Magic bullets in cancer chemotherapy. Anticancer Res., 2013, 58, 437-494.
[16]
Imran, A.; Mohammad, N.L.; Mohammad, S.; Danish, S.M.; Leonid, A. Advances in nanocarriers for anticancer drugs delivery. Curr. Med. Chem., 2016, 23(20), 2159-2187.
[17]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[18]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[19]
Sivaraman, V.S.; Wang, H.; Nuovo, G.J.; Malbon, C.C. Hyperexpression of mitogen-activated protein kinase in human breast cancer. J. Clin. Invest., 1997, 99(7), 1478-1483.
[20]
Ji, H.; Ramsey, M.R.; Hayes, D.N.; Fan, C.; McNamara, K.; Kozlowski, P.; Torrice, C.; Wu, M.C.; Shimamura, T.; Perera, S.A.; Liang, M.C.; Cai, D.; Naumov, G.N.; Bao, L.; Contreras, C.M.; Li, D.; Chen, L.; Krishnamurthy, J.; Koivunen, J.; Chirieac, L.R.; Padera, R.F.; Bronson, R.T.; Lindeman, N.I.; Christiani, D.C.; Lin, X.; Shapiro, G.I.; Janne, P.A.; Johnson, B.E.; Meyerson, M.; Kwiatkowski, D.J.; Castrillon, D.H.; Bardeesy, N.; Sharpless, N.E.; Wong, K.K. LKB1 modulates lung cancer differentiation and metastasis. Nature, 2007, 448(7155), 807-810.
[21]
Sheng, W.; Chen, C.; Dong, M.; Wang, G.; Zhou, J.; Song, H.; Li, Y.; Zhang, J.; Ding, S. Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis., 2017, 8(10)e3147
[22]
Sequist, L.V.; Bell, D.W.; Lynch, T.J.; Haber, D.A. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J. Clin. Oncol., 2007, 25(5), 587-595.
[23]
Shackelford, D.B.; Abt, E.; Gerken, L.; Vasquez, D.S.; Seki, A.; Leblanc, M.; Wei, L.; Fishbein, M.C.; Czernin, J.; Mischel, P.S.; Shaw, R.J. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell, 2013, 23(2), 143-158.
[24]
Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung cancer. N. Engl. J. Med., 2008, 359(13), 1367-1380.
[25]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[26]
Cano, E.; Mahadevan, L.C. Parallel signal processing among mammalian MAPKs. Trends Biochem. Sci., 1995, 20(3), 117-122.
[27]
Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298(5600), 1911-1912.
[28]
Doganer, F.; Cosan, T.D.; Gunes, H.V.; Degirmenci, I.; Bal, C. The effects of p38 gene silencing on breast cancer cells. Mol. Biol. Rep., 2014, 41(5), 2923-2927.
[29]
Nakamura, T. Development of a drug delivery system for cancer immunotherapy. Yakugaku Zasshi, 2016, 136(11), 1477-1484.
[30]
Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[31]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[32]
Jeon, S.M.; Chandel, N.S.; Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 2012, 485(7400), 661-665.
[33]
Wen, J.; Fu, J.; Zhang, W.; Guo, M. Genetic and epigenetic changes in lung carcinoma and their clinical implications. Mod. Pathol., 2011, 24(7), 932-943.
[34]
Greenberg, A.K.; Basu, S.; Hu, J.; Yie, T.A.; Tchou-Wong, K.M.; Rom, W.N.; Lee, T.C. Selective p38 activation in human non-small cell lung cancer. Am. J. Respir. Cell Mol. Biol., 2002, 26(5), 558-564.
[35]
Wagner, E.F.; Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer, 2009, 9(8), 537-549.
[36]
Hickinson, D.M.; Klinowska, T.; Speake, G.; Vincent, J.; Trigwell, C.; Anderton, J.; Beck, S.; Marshall, G.; Davenport, S.; Callis, R.; Mills, E.; Grosios, K.; Smith, P.; Barlaam, B.; Wilkinson, R.W.; Ogilvie, D. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: A unique agent for simultaneous ERBB receptor blockade in cancer. Clin. Cancer Res., 2010, 16(4), 1159-1169.
[37]
Park, S.H.; Seong, M.A.; Lee, H.Y. p38 MAPK-induced MDM2 degradation confers paclitaxel resistance through p53-mediated regulation of EGFR in human lung cancer cells. Oncotarget, 2016, 7(7), 8184-8199.
[38]
Zarredar, H.; Pashapour, S.; Ansarin, K.; Khalili, M.; Baghban, R.; Farajnia, S. Combination therapy with KRAS siRNA and EGFR inhibitor AZD8931 suppresses lung cancer cell growth in vitro. J. Cell. Physiol., 2018, 234(2), 1560-1566.
[39]
Chen, L.; Mayer, J.A.; Krisko, T.I.; Speers, C.W.; Wang, T.; Hilsenbeck, S.G.; Brown, P.H. Inhibition of the p38 kinase suppresses the proliferation of human ER-negative breast cancer cells. Cancer Res., 2009, 69(23), 8853-8861.
[40]
Chen, G.; Kronenberger, P.; Teugels, E.; Umelo, I.A.; De Grève, J. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: The effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. BMC Med., 2012, 10(1), 28.
[41]
Sorensen, V.; Zhen, Y.; Zakrzewska, M.; Haugsten, E.M.; Walchli, S.; Nilsen, T.; Olsnes, S.; Wiedlocha, A. Phosphorylation of Fibroblast Growth Factor (FGF) receptor 1 at Ser777 by p38 mitogen-activated protein kinase regulates translocation of exogenous FGF1 to the cytosol and nucleus. Mol. Cell. Biol., 2008, 28(12), 4129-4141.
[42]
Semizarov, D.; Frost, L.; Sarthy, A.; Kroeger, P.; Halbert, D.N.; Fesik, S.W. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6347-6352.
[43]
Donmez, Y.; Gunduz, U. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells. Biomed. Pharmacother., 2011, 65(2), 85-89.
[44]
Esmailzadeh, S.; Mansoori, B.; Mohammadi, A.; Shanehbandi, D.; Baradaran, B. siRNA-mediated silencing of HMGA2 induces apoptosis and cell cycle arrest in human colorectal carcinoma. J. Gastrointest. Cancer, 2017, 48(2), 156-163.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 5
Year: 2019
Page: [638 - 644]
Pages: 7
DOI: 10.2174/1871520619666190301125203
Price: $58

Article Metrics

PDF: 16
HTML: 2