Gamma Emitters in Pancreatic Endocrine Tumors Imaging in the PET Era: Is there a Clinical Space for 99mTc-peptides?

Author(s): Vittorio Briganti*, Vincenzo Cuccurullo, Giuseppe Danilo Di Stasio, Luigi Mansi.

Journal Name: Current Radiopharmaceuticals

Volume 12 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Pancreatic Neuroendocrine Tumors (PNETs) are rare neoplasms, sporadic or familial, even being part of a syndrome. Their diagnosis is based on symptoms, hormonal disorders or may be fortuitous. The role of Nuclear Medicine is important, mainly because of the possibility of a theranostic strategy. This approach is allowed by the availability of biochemical agents, which may be labeled with radionuclides suitable for diagnostic or therapeutic purposes, showing almost identical pharmacokinetics. The major role for radiopharmaceuticals is connected with radiolabeled Somatostatin Analogues (SSA), since somatostatin receptors are highly expressed on some of the neoplastic cell types.

Discussion: Nowadays, in the category of radiolabeled SSA, although 111In-pentetreotide, firstly commercially proposed, is still used, the best choice for diagnosis is related to the so called DOTAPET radiotracers labeled with 68-Gallium (Ga), such as 68Ga-DOTATATE, 68Ga-DOTANOC, and 68Ga-DOTATOC. More recently, labeling with 64-Copper (Cu) (64Cu-DOTATATE) has also been proposed. In this review, we discuss the clinical interest of a SAA (Tektrotyd©) radiolabeled with 99mTc, a gamma emitter with better characteristics, with respect to 111Indium, radiolabeling Octreoscan ©. By comparing both pharmacokinetics and pharmacodynamics of Octreoscan©, Tektrotyd© and PET DOTA-peptides, on the basis of literature data and of our own experience, we tried to highlight these topics to stimulate further studies, individuating actual clinical indications for all of these radiotracers.

Conclusion: In our opinion, Tektrotyd© could already find its applicative dimension in the daily practice of NETs, either pancreatic or not, at least in centers without a PET/CT or a 68Ga generator. Because of wider availability, a lower cost, and a longer decay, compared with respect to peptides labeled with 68Ga, it could be also proposed, in a theranostic context, for a dosimetry evaluation of patients undergoing Peptide Receptor Radionuclide Therapy (PRRT), and for non-oncologic indications of radiolabelled SSA. In this direction, and for a more rigorous cost/effective evaluation, more precisely individuating its clinical role, further studies are needed.

Keywords: PNETs, PET/CT, 111-In-pentetreotide, 68Ga-somatostatin analogs, 18F-DOPA, 18F-FDG, Tektrotyd.

[1]
Rindi, G.; Bordi, C. Highlights of the biology of endocrine tumours of the gut and pancreas. Endocr. Relat. Cancer, 2003, 10, 427-436.
[2]
Massironi, S.; Sciola, V.; Peracchi, M.; Ciafardini, C.; Spampatti, M.P.; Conte, D. Neuroendocrine tumors of the gastro-entero-pancreatic system. World J. Gastroenterol., 2008, 14, 5377-5384.
[3]
Ehehalt, F.; Saeger, H.D.; Schmidt, C.M.; Grutzmann, R. Neuroendocrine tumors of the pancreas. Oncologist, 2009, 14, 456-467.
[4]
Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.N.; Rashid, A.; Evans, D.B. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol., 2008, 26(18), 3063-3072.
[5]
Cuccurullo, V.; Cascini, G.L.; Tamburrini, O.; Mansi, L.; Rotondo, A. Less frequent requests for In-111 pentreotide and its brothers of endocrinological interest. Minerva Endocrinol., 2011, 36(1), 41-52.
[6]
Raman, S.P.; Hruban, R.H.; Cameron, J.L.; Wolfgang, C.L.; Fishman, E.K. Pancreatic imaging mimics: part 2, pancreatic neuroendocrine tumors and their mimics. AJR Am. J. Roent, 2012, 199(2), 309-318.
[7]
Krenning, E.P.; Kwekkeboom, D.J.; Bakker, W.H.; Breeman, W.A.; Kooij, P.P.; Oei, H.Y. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med., 1993, 20(8), 716-731.
[8]
Chiti, A.; Briganti, V.; Fanti, S.; Monetti, N.; Masi, R.; Bombardieri, E. Results and potential of somatostatin receptor imaging in gastroenteropancreatic tract tumours. Q. J. Nucl. Med., 2000, 44(1), 42-49.
[9]
Adams, S.; Baum, R.; Rink, T.; Schumm-Drager, P.M.; Usadel, K.H.; Hor, G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur. J. Nucl. Med., 1998, 25(1), 79-83.
[10]
Ambrosini, V.; Tomassetti, P.; Franchi, R.; Fanti, S. Imaging of NETs with PET radiopharmaceuticals. Q. J. Nucl. Med., 2010, 54(1), 16-23.
[11]
Yang, J.; Kan, Y.; Ge, B.H.; Yuan, L.; Li, C.; Zhao, W. Diagnostic role of Gallium-68 DOTATOC and Gallium-68 DOTATATE PET in patients with neuroendocrine tumors: A meta-analysis. Acta Radiol., 2014, 55(4), 389-398.
[12]
Imperiale, A.; Sebag, F.; Vix, M.; Castinetti, F.; Kessler, L.; Moreau, F. 18F-FDOPA PET/CT imaging of insulinoma revisited. Eur. J. Nucl. Med., 2015, 42(3), 409-418.
[13]
Shih, W.J.; Hirschowitz, E.; Bensadoun, E.; Woodring, J.; Ryo, Yu.; Kraman, S. Biodistribution on Tc-99m labeled somatostatin receptor-binding peptide (Depreotide, NeoTec) planar and SPECT studies. Ann. Nucl. Med., 2002, 16(3), 213-219.
[14]
Artiko, V.; Sobic-Saranovic, D.; Pavlovic, S.; Petrovic, M.; Zuvela, M.; Antic, A.; Matic, S.; Odalovic, S.; Petrovic, N.; Milovanovic, A.; Obradovic, V. The clinical value of scintigraphy of neuroendocrine tumors using (99m)Tc-HYNIC-TOC. J. BUON, 2012, 17(3), 537-542.
[15]
Grant, C.S. Insulinoma. Best Pract. Res. Clin. Gastroenterol., 2005, 19(5), 783-798.
[16]
Zhao, Y.P.; Zhan, H.X.; Zhang, T.P.; Cong, L.; Dai, M.H.; Liao, Q. Surgical management of patients with insulinomas: Result of 292 cases in a single institution. J. Surg. Oncol., 2011, 103(2), 169-174.
[17]
Guettier, J.M. 1.; Kam, A.; Chang, R.; Skarulis, M.C.; Cochran, C.; Alexander, H.R.; Libutti, S.K.; Pingpank, J.F.; Gorden, P. Localization of insulinomas to regions of the pancreas by intraarterial calcium stimulation: The NIH experience. J. Clin. Endocrinol. Metab., 2009, 94(4), 1074-1080.
[18]
Sotoudehmanesh, R.; Hedayat, A.; Shirazian, N.; Shahraeeni, S.; Ainechi, S.; Zeinali, F. Endoscopic ultrasonography (EUS) in the localization of insulinoma. Endocrine, 2007, 31(3), 238-241.
[19]
Wong, M.; Isa, S.H.; Zahiah, M.; Azmi, K.N. Intraoperative ultrasound with palpation is still superior to intra-arterial calcium stimulation test in localising insulinoma. World J. Surg., 2007, 31(3), 586-592.
[20]
Prasad, V.; Sainz-Esteban, A.; Arsenic, R.; Plöckinger, U.; Denecke, T.; Pape, U.F.; Pascher, A.; Kühnen, P.; Pavel, M.; Blankenstein, O. Role of (68)Ga somatostatin receptor PET/CT in the detection of endogenous hyperinsulinaemic focus: An explorative study. Eur. J. Nucl. Med., 2016, 43(9), 1593-1600.
[21]
Hubalewska-Dydejczyk, A.; Kulig, J.; Szybinski, P.; Mikolajczak, R.; Pach, D.; Sowa-Staszczak, A. Radio-guided surgery with the use of [99mTc-EDDA/HYNIC]octreotate in intra-operative detection of neuroendocrine tumours of the gastrointestinal tract. Eur. J. Nucl. Med., 2007, 34(10), 1545-1555.
[22]
Hirshberg, B. 1.; Cochran, C.; Skarulis, M.C.; Libutti, S.K.; Alexander, H.R.; Wood, B.J.; Chang, R.; Kleiner, D.E.; Gorden, P. Malignant insulinoma: Spectrum of unusual clinical features. Cancer, 2005, 104(2), 264-272.
[23]
Bourcier, M.E.; Sherrod, A.; DiGuardo, M.; Vinik, A.I. Successful control of intractable hypoglycemia using rapamycin in an 86-year-old man with a pancreatic insulin-secreting islet cell tumor and metastases. J. Clin. Endocrinol. Metab., 2009, 94(9), 3157-3162.
[24]
Ong, G.S.; Henley, D.E.; Hurley, D.; Turner, J.H.; Claringbold, P.G.; Fegan, P.G. Therapies for the medical management of persistent hypoglycaemia in two cases of inoperable malignant insulinoma. Eur. J. Endocrinol., 2010, 162(5), 1001-1008.
[25]
Gibril, F.; Jensen, R.T. Zollinger-Ellison syndrome revisited, diagnosis, biologic markers, associated inherited disorders, and acid hypersecretion. Curr. Gastroenterol. Rep., 2004, 6(6), 454-463.
[26]
Stabile, B.E.; Morrow, D.J.; Passaro, E. Jr. The gastrinoma triangle: operative implications. Am. J. Surg., 1984, 147(1), 25-31.
[27]
Berna, M.J.; Hoffmann, K.M.; Serrano, J.; Gibril, F.; Jensen, R.T. Serum gastrin in Zollinger-Ellison syndrome: I. Prospective study of fasting serum gastrin in 309 patients from the National Institutes of Health and comparison with 2229 cases from the literature. Medicine , 2006, 85(6), 295-330.
[28]
Pfannenberg, A.C.; Burkart, C.; Krober, S.M.; Eschmann, S.M.; Horger, M.S.; Claussen, C.D. Dual-phase multidetector thin-section CT in detecting duodenal gastrinoma. Abdom. Imaging, 2005, 30(5), 543-547.
[29]
Prinz, R.A. Localization of gastrinomas. Int. J. of pancreatology., 1996, 19(2), 79-91.
[30]
Lew, E.A.; Pisegna, J.R.; Starr, J.A.; Soffer, E.F.; Forsmark, C.; Modlin, I.M.; Walsh, J.H.; Beg, M.; Bochenek, W.; Metz, D.C. Intravenous pantoprazole rapidly controls gastric acid hypersecretion in patients with Zollinger-Ellison syndrome. Gastroenterology, 2000, 118(4), 696-704.
[31]
Norton, J.A.; Jensen, R.T. Current surgical management of Zollinger-Ellison syndrome (ZES) in patients without multiple endocrine neoplasia-type 1 (MEN1). Surg. Oncol., 2003, 12(2), 145-151.
[32]
Mekhjian, H.S.; O’Dorisio, T.M. VIPoma syndrome. Semin. Oncol., 1987, 14(3), 282-291.
[33]
Park, S.K.; O’Dorisio, M.S.; O’Dorisio, T.M. Vasoactive intestinal polypeptide-secreting tumours: Biology and therapy. Baillieres Clin. Gastroenterol., 1996, 10(4), 673-696.
[34]
Koch, T.R.; Michener, S.R.; Go, V.L. Plasma vasoactive intestinal polypeptide concentration determination in patients with diarrhea. Gastroenterology, 1991, 100(1), 99-106.
[35]
Ghaferi, A.A.; Chojnacki, K.A.; Long, W.D.; Cameron, J.L.; Yeo, C.J. Pancreatic VIPomas: Subject review and one institutional experience. J. Gastrointest. Surg., 2008, 12(2), 382-393.
[36]
Cascini, G.L.; Cuccurullo, V.; Tamburrini, O.; Rotondo, A.; Mansi, L. Peptide imaging with somatostatin analogues: more than cancer probes. Curr. Radiopharm., 2013, 6(1), 36-40.
[37]
Kindmark, H.; Sundin, A.; Granberg, D.; Dunder, K.; Skogseid, B.; Janson, E.T. Endocrine pancreatic tumors with glucagon hypersecretion: A retrospective study of 23 cases during 20 years. Med. Oncol., 2007, 24(3), 330-337.
[38]
Wermers, R.A.; Fatourechi, V.; Wynne, A.G.; Kvols, L.K.; Lloyd, R.V. The glucagonoma syndrome. Clinical and pathologic features in 21 patients. Medicine , 1996, 75(2), 53-63.
[39]
Maton, P.N.; Gardner, J.D.; Jensen, R.T. Use of long-acting somatostatin analog SMS 201-995 in patients with pancreatic islet cell tumors. Dig. Dis. Sci., 1989, 34, 28S-39S.
[40]
Boden, G.; Ryan, I.G.; Eisenschmid, B.L.; Shelmet, J.J.; Owen, O.E. Treatment of inoperable glucagonoma with the long-acting somatostatin analogue SMS 201-995. N. Engl. J. Med., 1986, 314(26), 1686-1689.
[41]
Kuo, S.C.; Gananadha, S.; Scarlett, C.J.; Gill, A.; Smith, R.C. Sporadic pancreatic polypeptide secreting tumors (PPomas) of the pancreas. World J. Surg., 2008, 32(8), 1815-1822.
[42]
Solorzano, C.C.; Lee, J.E.; Pisters, P.W.; Vauthey, J.N.; Ayers, G.D.; Jean, M.E. Nonfunctioning islet cell carcinoma of the pancreas: Survival results in a contemporary series of 163 patients. Surgery, 2001, 130(6), 1078-1085.
[43]
Kouvaraki, M.A.; Solorzano, C.C.; Shapiro, S.E.; Yao, J.C.; Perrier, N.D.; Lee, J.E. Surgical treatment of non-functioning pancreatic islet cell tumors. J. Surg. Oncol., 2005, 89(3), 170-185.
[44]
Agarwal, S.K.; Kennedy, P.A.; Scacheri, P.C.; Novotny, E.A.; Hickman, A.B.; Cerrato, A. Menin molecular interactions: insights into normal functions and tumorigenesis. Horm. Metab. Res., 2005, 37(6), 369-374.
[45]
Marx, S.J.; Agarwal, S.K.; Kester, M.B.; Heppner, C.; Kim, Y.S.; Skarulis, M.C. Multiple endocrine neoplasia type 1: Clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog. Horm. Res., 1999, 54, 397-438.
[46]
Agarwal, S.K.; Lee Burns, A.; Sukhodolets, K.E.; Kennedy, P.A.; Obungu, V.H.; Hickman, A.B. Molecular pathology of the MEN1 gene. Ann. N. Y. Acad. Sci., 2004, 1014, 189-198.
[47]
Brandi, M.L.; Gagel, R.F.; Angeli, A.; Bilezikian, J.P.; Beck-Peccoz, P.; Bordi, C.; Conte-Devolx, B.; Falchetti, A.; Gheri, R.G.; Libroia, A.; Lips, C.J.; Lombardi, G.; Mannelli, M.; Pacini, F.; Ponder, B.A.; Raue, F.; Skogseid, B.; Tamburrano, G.; Thakker, R.V.; Thompson, N.W.; Tomassetti, P.; Tonelli, F.; Wells, S.A. Jr., Marx, S.J. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab., 2001, 86(12), 5658-5671.
[48]
Thakker, R. V1.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab., 2012, 97(9), 2990-3011.
[49]
Tonelli, F.; Giudici, F.; Fratini, G.; Brandi, M.L. Pancreatic endocrine tumors in multiple endocrine neoplasia type 1 syndrome: review of literature. Endocr. Pract., 2011, 17, 33-40.
[50]
Maher, E.R.; Neumann, H.P.; Richard, S. von Hippel-Lindau disease: A clinical and scientific review. Eur. J. Hum. Genet., 2011, 19(6), 617-623.
[51]
Kaelin, W.G. Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer, 2002, 2(9), 673-682.
[52]
Shuin, T.; Yamazaki, I.; Tamura, K.; Kamada, M.; Ashida, S. Recent advances in ideas on the molecular pathology and clinical aspects of Von Hippel-Lindau disease. Int. J. Clin. Oncol., 2004, 9(4), 283-287.
[53]
Zhou, C.; Dhall, D.; Nissen, N.N.; Chen, C.R.; Yu, R. Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas, 2009, 38(8), 941-946.
[54]
Yu, R.; Wawrowsky, K.; Zhou, C. A natural inactivating mutant of human glucagon receptor exhibits multiple abnormalities in processing and signaling. Endocrinol. Nutr., 2011, 58, 258-266.
[55]
Yu, R.; Dhall, D.; Nissen, N.N.; Zhou, C.; Ren, S.G. Pancreatic neuroendocrine tumors in glucagon receptor-deficient mice. PLoS One, 2011, 6(8), e23397.
[56]
Stabin, M.G.; Kooij, P.P.; Bakker, W.H.; Inoue, T.; Endo, K.; Coveney, J. Radiation dosimetry for indium-111-pentetreotide. J. Nucl. Med., 1997, 38(12), 1919-1922.
[57]
Cuccurullo, V.; Prisco, M.R.; Di Stasio, G.D.; Mansi, L. Nuclear Medicine in Patients with NET: Radiolabeled Somatostatin Analogues and their Brothers. Curr. Radiopharm., 2017, 10(2), 74-84.
[58]
Cuccurullo, V.; Di Stasio, G.D.; Prisco, M.R.; Mansi, L. Is there a clinical usefulness for radiolabeled somatostatin analogues beyond the consolidated role in NETs? Indian J. Radiol. Imaging, 2017, 27(4), 509-516.
[59]
Cuccurullo, V.; Di Stasio, G.D.; Mansi, L. Radioguided surgery with radiolabeled somatostatin analogs: Not only in GEP-NETs. Nucl. Med. Rev. Cent. East. Eur., 2017, 20(1), 49-56.
[60]
Gabriel, M.; Decristoforo, C.; Donnemiller, E.; Ulmer, H. Watfah, Rychlinski C.; Mather, S.J. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J. Nucl. Med., 2003, 44(5), 708-716.
[61]
Kunikowska, J.; Lewington, V.; Krolicki, L. Optimizing somatostatin receptor imaging in patients with neuroendocrine tumors: The impact of 99mTc-Hynictoc SPECT/SPECT/CT Versus 68Ga-DOTATATE PET/CT upon clinical management. Clin. Nucl. Med., 2017, 42(12), 905-911.
[62]
Gabriel, M.; Decristoforo, C.; Kendler, D.; Dobrozemsky, G.; Heute, D.; Uprimny, C. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med., 2007, 48(4), 508-518.
[63]
Cuccurullo, V.; Faggiano, A.; Scialpi, M.; Cascini, G.L.; Piunno, A.; Catalano, O.; Colao, A.; Mansi, L. Questions and answers: what can be said by diagnostic imaging in neuroendocrine tumors? Minerva Endocrinol., 2012, 37, 367-377.
[64]
Madrzak, D.; Mikolajczak, R.; Kaminski, G. Influence of PET/CT 68Ga somatostatin receptor imaging on proceeding with patients, who were previously diagnosed with 99mTc-EDDA/HYNIC-TOC SPECT. Nucl. Med. Rev. Cent. East. Eur., 2016, 19(2), 88-92.
[65]
Briganti, V.; Sestini, R.; Orlando, C.; Bernini, G.; La Cava, G.; Tamburini, A.; Raggi, C.C.; Serio, M.; Maggi, M. Imaging of somatostatin receptors by indium-111-pentetreotide correlates with quantitative determination of somatostatin receptor type 2 gene expression in neuroblastoma tumors. Clin. Cancer Res., 1997, 3, 2385-2391.
[66]
Casini Raggi, C.; Calabrò, A.; Renzi, D.; Briganti, V.; Cianchi, F.; Messerini, L.; Valanzano, R.; Cameron Smith, M.; Cortesini, C.; Tonelli, F.; Serio, M.; Maggi, M.; Orlando, C. Quantitative evaluation of somatostatin receptor subtype 2 expression in sporadic colorectal tumor and in the corresponding normal mucosa. Clin. Cancer Res., 2002, 8(2), 419-427.
[67]
Ezziddin, S.; Lohmar, J.; Yong-Hing, C.J.; Sabet, A.; Ahmadzadehfar, H.; Kukuk, G. Does the pretherapeutic tumor SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? Clin. Nucl. Med., 2012, 37(6), e141-e147.
[68]
Bodei, L.; Mueller-Brand, J.; Baum, R.P.; Pavel, M.E.; Hörsch, D.; O’Dorisio, M.S.; O’Dorisio, T.M.; Howe, J.R.; Cremonesi, M.; Kwekkeboom, D.J.; Zaknun, J.J. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur. J. Nucl. Med., 2013, 40(5), 800-816.
[69]
Bakker, W.H.; Breeman, W.A.; Kwekkeboom, D.J.; De Jong, L.C.; Krenning, E.P. Practical aspects of peptide receptor radionuclide therapy with [177Lu][DOTA0, Tyr3]octreotate. Q. J. Nucl. Med. Mol. Imaging, 2006, 50(4), 265-271.
[70]
Cuccurullo, V.; Di Stasio, G.D.; Mansi, L. Physiopathological premises to Nuclear Medicine Imaging of pancreatic neuroendocrine tumours. Curr. Radiopharm., 2019. In Press


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 2
Year: 2019
Page: [156 - 170]
Pages: 15
DOI: 10.2174/1874471012666190301122524
Price: $65

Article Metrics

PDF: 44
HTML: 4
EPUB: 1
PRC: 1