Pharmacological Interventions to Attenuate Alzheimer’s Disease Progression: The Story So Far

Author(s): Firas H. Bazzari* , Dalaal M. Abdallah , Hanan S. El-Abhar .

Journal Name: Current Alzheimer Research

Volume 16 , Issue 3 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia in the elderly. Up to date, the available pharmacological options for AD are limited to cholinesterase inhibitors and memantine that may only provide modest symptomatic management with no significance in slowing down the disease progression. Over the past three decades, the increased interest in and the understanding of AD major pathological hallmarks have provided an insight into the mechanisms mediating its pathogenesis, which in turn introduced a number of hypotheses and novel targets for the treatment of AD. Initially, targeting amyloid-beta and tau protein was considered the most promising therapeutic approach. However, further investigations have identified other major players, such as neuroinflammation, impaired insulin signalling and defective autophagy, that may contribute to the disease progression. While some promising drugs are currently being investigated in human studies, the majority of the previously developed medical agents have come to an end in clinical trials, as they have failed to illustrate any beneficial outcome. This review aims to discuss the different introduced approaches to alleviate AD progression; in addition, provides a comprehensive overview of the drugs in the development phase as well as their mode of action and an update of their status in clinical trials.

Keywords: Alzheimer's disease, drugs, clinical trials, pharmacological treatment, neuro-inflammation, insulin resistance, autophagy, cognitive deterioration.

[1]
Wilson RS, Segawa E, Boyle PA, Anagnos SE, Hizel LP, Bennett DA. The natural history of cognitive decline in Alzheimer’s disease. Psychol Aging 27(4): 1008-17. (2012)
[2]
Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future Alzheimer’s Disease International. (ADI), London,UK. (2016)
[3]
Wimo A, Jönsson L, Bond J, Prince M, Winblad B. The worldwide economic impact of dementia 2010. Alzheimers Dement 9(1): 1-11. (2013)
[4]
Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13(1): 1-7. (2017)
[5]
Alzheimer's Association.2018 Alzheimer’s disease facts and figures. Alzheimers Dement 14(3): 367-429. (2018)
[6]
Katzman R. The prevalence and malignancy of Alzheimer disease: a major killer. Arch Neurol 33(4): 217-8. (1976)
[7]
Schweber M. Etiologic theories of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 1(1): 24-31. (1986)
[8]
Siegfried K. The cholinergic hypothesis of Alzheimer’s disease. Eur Neuropsychopharmacol 3(3): 170-1. (1993)
[9]
Raschetti R, Maggini M, Sorrentino GC, Martini N, Caffari B, Vanacore N. A cohort study of effectiveness of acetylcholinesterase inhibitors in Alzheimer’s disease. Eur J Clin Pharmacol 61(5-6): 361-8. (2005)
[10]
Galimberti D, Scarpini E. Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opin Investig Drugs 25(10): 1181-7. (2016)
[11]
Carrière I, Fourrier-Reglat A, Dartigues JF, Rouaud O, Pasquier F, Ritchie K, et al. Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: the 3-city study. Arch Intern Med 169(14): 1317-24. (2009)
[12]
Merchant RA, Li B, Yap KB, Ng TP. Use of drugs with anticholinegic effects and cognitive impairment in community-living older persons. Age Ageing 38(1): 105-8. (2008)
[13]
Yan YH, Li SH, Gao Z, Zou SF, Li HY, Tao ZY, et al. Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow-derived neural stem cells via notch signaling pathway. Life Sci 166: 131-8. (2016)
[14]
Kidd S, Lieber T. Mechanism of notch pathway activation and its role in the regulation of olfactory plasticity in Drosophila melanogaster. PLoS One 11(3): e0151279. (2016)
[15]
Klein WL, Krafft GA, Finch CE. Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24(4): 219-24. (2001)
[16]
Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, et al. Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 24(45): 10191-200. (2004)
[17]
Ittner LM, Götz J. Amyloid-β and tau-a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2): 67-72. (2011)
[18]
Götz J, Ittner A, Ittner LM. Tau-targeted treatment strategies in Alzheimer’s disease. Br J Pharmacol 165(5): 1246-59. (2012)
[19]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054): 184-5. (1992)
[20]
Pimplikar SW. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41(6): 1261-8. (2009)
[21]
Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, et al. Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 97(1): 1-13. (2012)
[22]
Armato U, Chakravarthy B, Pacchiana R, Whitfield JF. Alzheimer’s disease: an update of the roles of receptors, astrocytes and primary cilia. Int J Mol Med 31(1): 3-10. (2013)
[23]
Kumar A, Singh A. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2): 195-203. (2015)
[24]
Ewers M, Cheng X, Zhong Z, Nural HF, Walsh C, Meindl T, et al. Increased CSF-BACE1 activity associated with decreased hippocampus volume in Alzheimer’s disease. J Alzheimers Dis 25(2): 373-81. (2011)
[25]
Cai Y, An SS, Kim S. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin Interv Aging 10: 1163-72. (2015)
[26]
Xu W, Tan L, Wang HF, Jiang T, Tan MS, Tan L, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 86(12): 1299-306. (2015)
[27]
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4): 640-51. (2014)
[28]
Wang S, Mims PN, Roman RJ, Fan F. Is beta-amyloid accumulation a cause or consequence of Alzheimer’s disease? J Alzheimers Parkinsonism Dement 1(2): pii007. (2016)
[29]
Suzanne M. Insulin resistance and Alzheimer’s disease. BMB Rep 42(8): 475-81. (2009)
[30]
Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, et al. Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol 106: 33-54. (2013)
[31]
Zhang F, Jiang L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat 11: 243-56. (2015)
[32]
Verdile G, Fuller S, Atwood CS, Laws SM, Gandy SE, Martins RN. The role of beta amyloid in Alzheimer’s disease: still a cause of everything or the only one who got caught? Pharmacol Res 50(4): 397-409. (2004)
[33]
Weller RO, Preston SD, Subash M, Carare RO. Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res Ther 1: 6. (2009)
[34]
Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9(7): 702-16. (2010)
[35]
De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2): 99-107. (2010)
[36]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34: 185-204. (2011)
[37]
Skovronsky DM, Moore DB, Milla ME, Doms RW, Lee VM. Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-Golgi network. J Biol Chem 275(4): 2568-75. (2000)
[38]
Yan R, Vassar R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13(3): 319-29. (2014)
[39]
Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 6: 89. (2014)
[40]
Lilly Halts Phase 2 Trial of BACE Inhibitor Due to Liver Toxicity.In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/news/research-news/lilly-halts-phase-2-trial-bace-inhibitor-due-liver-toxicity
[41]
Hung SY, Fu WM. Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci 24: 47. (2017)
[42]
RG7129. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/rg7129
[43]
Graham WV, Bonito-Oliva A, Sakmar TP. Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med 68: 413-30. (2017)
[44]
BI1181181. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/bi-1181181
[45]
Liver Tox Ends Janssen BACE Program. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/news/research-news/liver-tox-ends-janssen-bace-program
[46]
Scratch Lanabecestat: This BACE Inhibitor Doesn’t Work in Symptomatic AD, Either. In: Alzheimer Research Forum (Alzforum).Available from: https://www.alzforum.org/news/research-news/scratch-lanabecestat-bace-inhibitor-doesnt-work-symptomatic-ad-either
[47]
Verubecestat. In: Alzheimer Research Forum (Alzforum). 2018.Available from: https://www.alzforum.org/therapeutics/verubecestat
[48]
Mullard A. BACE inhibitor bust in Alzheimer trial. Nat Rev Drug Discov 16(3): 115. (2017)
[49]
Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76(1): 173-81. (2001)
[50]
Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880): 535-9. (2002)
[51]
Asai M, Hattori C, Iwata N, Saido TC, Sasagawa N, Szabó B, et al. The novel β-secretase inhibitor KMI429 reduces amyloid β peptide production in amyloid precursor protein transgenic and wild type mice. J Neurochem 96(2): 533-40. (2006)
[52]
Semagacestat. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/semagacestat
[53]
Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369(4): 341-50. (2013)
[54]
Avagacestat. In: Alzheimer Research Forum (Alzforum). Available form: https://www.alzforum.org/therapeutics/avagacestat
[55]
EVP-0962. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/evp-0962
[56]
Martone RL, Zhou H, Atchison K, Comery T, Xu JZ, Huang X, et al. Begacestat (GSI-953): A novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein γ-secretase for the treatment of Alzheimer’s disease. J Pharmacol Exp Ther 331(2): 598-608. (2009)
[57]
Tolia A, De Strooper B. Structure and function of γ-secretase. Semin Cell Dev Biol 20(2): 211-8. (2009)
[58]
Shih IM, Wang TL. Notch signaling, γ-secretase inhibitors, and cancer therapy. Cancer Res 67(5): 1879-82. (2007)
[59]
Basi GS, Hemphill S, Brigham EF, Liao A, Aubele DL, Baker J, et al. Amyloid precursor protein selective gamma-secretase inhibitors for treatment of Alzheimer’s disease. Alzheimers Res Ther 2: 36. (2010)
[60]
Pasinetti GM. Compositions and methods for treating alzheimer's disease and related disorders and promoting a healthy nervous system.US. Patent 8,193,250 (2012)
[61]
CHF 5074. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/chf-5074
[62]
Bandyopadhyay S, Goldstein LE, Lahiri DK, Rogers JT. Role of the APP non-amyloidogenic signaling pathway and targeting α-secretase as an alternative drug target for treatment of Alzheimer’s disease. Curr Med Chem 14(27): 2848-64. (2007)
[63]
Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, et al. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 96(7): 3922-7. (1999)
[64]
Postina R. Activation of α-secretase cleavage. J Neurochem 120(1): 46-54. (2012)
[65]
Saraceno C, Marcello E, Di Marino D, Borroni B, Claeysen S, Perroy J, et al. SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation. Cell Death Dis 5(11): e1547. (2014)
[66]
Cascella M, Bimonte S, Muzio MR, Schiavone V, Cuomo A. The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: An overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agent Cancer 12: 36. (2017)
[67]
Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, et al. Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κ B pathways in mice. J Nutr 139(10): 1987-93. (2009)
[68]
Holthoewer D, Endres K, Schuck F, Hiemke C, Schmitt U, Fahrenholz F. Acitretin, an enhancer of alpha-secretase expression, crosses the blood-brain barrier and is not eliminated by P-glycoprotein. Neurodegener Dis 10(1-4): 224-8. (2012)
[69]
Endres K, Fahrenholz F, Lotz J, Hiemke C, Teipel S, Lieb K, et al. Increased CSF APPs-α levels in patients with Alzheimer disease treated with acitretin. Neurology 83(21): 1930-5. (2014)
[70]
Folch J, Petrov D, Ettcheto M, Abad S, Sánchez-López E, García ML, et al. Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016: 8501693. (2016)
[71]
Boyd TD, Bennett SP, Mori T, Governatori N, Runfeldt M, Norden M, et al. GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J Alzheimers Dis 21(2): 507-18. (2010)
[72]
Giacobini E, Gold G. Alzheimer disease therapy-moving from amyloid-β to tau. Nat Rev Neurol 9(12): 677-86. (2013)
[73]
Baranello RJ, Bharani KL, Padmaraju V, Chopra N, Lahiri DK, Greig NH, et al. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Curr Alzheimer Res 12(1): 32-46. (2015)
[74]
Nelson AR, Sagare AP, Zlokovic BV. Blood-Brain Barrier Transport of Alzheimer’s Amyloid β-Peptide. In: Developing Therapeutics for Alzheimer’s Disease: Progress and Challenges (Ed: Wolfe MS) Cambridge: Academic Press. 251-70. (2016)
[75]
Boche D, Nicoll JA. SYMPOSIUM: clearance of Aβ from the Brain in Alzheimer’Disease: the role of the immune system in clearance of aβ from the brain. Brain Pathol 18(2): 267-78. (2008)
[76]
Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci 12: 25. (2018)
[77]
Mudher A, Lovestone S. Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci 25(1): 22-6. (2002)
[78]
Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, et al. Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. BioMed Res Int 2016: 3245935. (2016)
[79]
Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8): 656-64. (2010)
[80]
Buée L, Bussiere T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain ResRev 33(1): 95-130. (2000)
[81]
Lovestone S, Boada M, Dubois B, Hüll M, Rinne JO, Huppertz HJ, et al. A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimers Dis 45(1): 75-88. (2015)
[82]
Rahman MM, Prünte L, Lebender LF, Patel BS, Gelissen I, Hansbro PM, et al. The phosphorylated form of FTY720 activates PP2A, represses inflammation and is devoid of S1P agonism in A549 lung epithelial cells. Sci Rep 6: 37297. (2016)
[83]
Aytan N, Choi JK, Carreras I, Brinkmann V, Kowall NW, Jenkins BG, et al. Fingolimod modulates multiple neuroinflammatory markers in a mouse model of Alzheimer’s disease. Sci Rep 6: 24939. (2016)
[84]
Hemmati F, Dargahi L, Nasoohi S, Omidbakhsh R, Mohamed Z, Chik Z, et al. Neurorestorative effect of FTY720 in a rat model of Alzheimer’s disease: comparison with memantine. Behav Brain Res 252: 415-21. (2013)
[85]
Giguère FS, Essis SA, Chagniel L, Germain M, Cyr M, Massicotte G. The sphingosine-1-phosphate receptor 1 agonist SEW2871 reduces Tau-Ser262 phosphorylation in rat hippocampal slices. Brain Res 1658: 51-9. (2017)
[86]
Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41(2): 368-74. (2010)
[87]
Takasugi N, Sasaki T, Suzuki K, Osawa S, Isshiki H, Hori Y, et al. BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. J Neurosci 31(18): 6850-7. (2011)
[88]
Takasugi N, Sasaki T, Ebinuma I, Osawa S, Isshiki H, Takeo K, et al. FTY720/fingolimod, a sphingosine analogue, reduces amyloid-β production in neurons. PLoS One 8(5): e64050. (2013)
[89]
Butler D, Bendiske J, Michaelis ML, Karanian DA, Bahr BA. Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 562(1-2): 20-7. (2007)
[90]
Brunden KR, Zhang B, Carroll J, Yao Y, Potuzak JS, Hogan AM, et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 30(41): 13861-6. (2010)
[91]
Carlson RO. New tubulin targeting agents currently in clinical development. Expert Opin Investig Drugs 17(5): 707-22. (2008)
[92]
Cisek KL, Cooper GJ, Huseby C, Kuret J. Structure and mechanism of action of tau aggregation inhibitors. Curr Alzheimer Res 11(10): 918-27. (2014)
[93]
Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci USA 93(20): 11213-8. (1996)
[94]
Wischik CM, Staff RT, Wischik DJ, Bentham P, Murray AD, Storey J, et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J Alzheimers Dis 44(2): 705-20. (2015)
[95]
Baddeley TC, McCaffrey J, Storey JM, Cheung JK, Melis V, Horsley D, et al. Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer’s disease. J Pharmacol Exp Ther 352(1): 110-8. (2015)
[96]
LMTM. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/lmtm
[97]
Will Tau Drug Show Its True Colors in Phase 3 Trials?. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/news/research-news/will-tau-drug-show-its-true-colors-phase-3-trials
[98]
Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 21(6): 394-402. (2015)
[99]
AADvac-1. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/aadvac-1
[100]
Theunis C, Crespo-Biel N, Gafner V, Pihlgren M, López-Deber MP, Reis P, et al. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau. P301L mice that model tauopathy. PLoS One 8(8): e72301. (2013)
[101]
RG7345. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/rg7345
[102]
BIIB092. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/biib092
[103]
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4): 388-405. (2015)
[104]
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6): 358-72. (2015)
[105]
Zhang F, Jiang L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat 11: 243-56. (2015)
[106]
Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12(6): 719-32. (2016)
[107]
Azeliragon. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/azeliragon
[108]
Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20(15): 5709-14. (2000)
[109]
Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, et al. Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 23(20): 7504-9. (2003)
[110]
Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice. Brain 128(6): 1442-53. (2005)
[111]
Pasqualetti P, Bonomini C, Dal Forno G, Paulon L, Sinforiani E, Marra C, et al. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease. Aging Clin Exp Res 21(2): 102-10. (2009)
[112]
Meinert CL, McCaffrey LD, Breitner JC. ADAPT Research Group.Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): design, methods, and baseline results. Alzheimers Dement 5(2): 93-104. (2009)
[113]
Zhang C, Wang Y, Wang D, Zhang J, Zhang F. NSAID exposure and risk of Alzheimer’s disease: an updated meta-analysis from cohort studies. Front Aging Neurosci 10: 83. (2018)
[114]
Hori Y, Takeda S, Cho H, Wegmann S, Shoup TM, Takahashi K, et al. FDA approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer′ s disease. J Biol Chem 290(4): 1966-78. (2014)
[115]
Schlachetzki J, Hull M. Microglial activation in Alzheimer’s disease. Curr Alzheimer Res 6(6): 554-63. (2009)
[116]
Chang R, Yee KL, Sumbria RK. Tumor necrosis factor α Inhibition for Alzheimer’s Disease. J Cent Nerv Syst Dis 9: 1179573517709278. (2017)
[117]
Goffe B, Cather JC. Etanercept: an overview. J Am Acad Dermatol 49(2): 105-11. (2003)
[118]
Tobinick EL, Gross H. Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. J Neuroinflammation 5: 2. (2008)
[119]
Tobinick EL, Gross H. Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer’s disease. BMC Neurol 8: 27. (2008)
[120]
Butchart J, Brook L, Hopkins V, Teeling J, Püntener U, Culliford D, et al. Etanercept in Alzheimer disease A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology 84(21): 2161-8. (2015)
[121]
Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed 8(2): 25. (2006)
[122]
Camargo CH, Justus FF, Retzlaff G, Blood MR, Schafranski MD. Action of anti-TNF-α drugs on the progression of Alzheimer’s disease: a case report. Dement Neuropsychol 9(2): 196-200. (2015)
[123]
Chou RC, Kane M, Ghimire S, Gautam S, Gui J. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: a nested case-control analysis. CNS Drugs 30(11): 1111-20. (2016)
[124]
Dinarello CA, Simon A, Van Der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11(8): 633-52. (2012)
[125]
Ardura-Fabregat A, Boddeke EW, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, et al. Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 31(12): 1057-82. (2017)
[126]
Mandrekar-Colucci S, Karlo JC, Landreth GE. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J Neurosci 32(30): 10117-28. (2012)
[127]
Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 32(48): 17321-31. (2012)
[128]
Gold M, Alderton C, Zvartau-Hind M, Egginton S, Saunders AM, Irizarry M, et al. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord 30(2): 131-46. (2010)
[129]
Harrington C, Sawchak S, Chiang C, Davies J, Donovan CM, Saunders A, et al. Rosiglitazone does not improve cognition or global function when used as adjunctive therapy to AChE inhibitors in mild-to-moderate Alzheimer’s disease: two phase 3 studies. Curr Alzheimer Res 8(5): 592-606. (2011)
[130]
Pioglitazone. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/pioglitazone
[131]
Yasuda S, Sugiura H, Tanaka H, Takigami S, Yamagata K. p38 MAP kinase inhibitors as potential therapeutic drugs for neural diseases. Cent Nerv Syst Agents Med Chem 11(1): 45-59. (2011)
[132]
Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflammation 8: 79. (2011)
[133]
Corrêa SA, Eales KL. The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct 2012: 649079. (2012)
[134]
Roy SM, Grum-Tokars VL, Schavocky JP, Saeed F, Staniszewski A, Teich AF, et al. Targeting human central nervous system protein kinases: an isoform selective p38αMAPK inhibitor that attenuates disease progression in Alzheimer’s disease mouse models. ACS Chem Neurosci 6(4): 666-80. (2015)
[135]
Alam JJ. Selective brain-targeted antagonism of p38 MAPKα reduces hippocampal IL-1β levels and improves Morris water maze performance in aged rats. J Alzheimers Dis 48(1): 219-27. (2015)
[136]
Campos-Pena V, Toral-Rios D, Becerril-Pérez F, Sánchez-Torres C, Delgado-Namorado Y, Torres-Ossorio E, et al. Metabolic syndrome as a risk factor for Alzheimer’s disease: is Aβ a crucial factor in both pathologies? Antioxid Redox Signal 26(10): 542-60. (2017)
[137]
Bedse G, Di Domenico F, Serviddio G, Cassano T. Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front Neurosci 9: 204. (2015)
[138]
Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med 47: e149. (2015)
[139]
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 60(9): 1577-85. (2017)
[140]
Morley JE, Niehoff ML, Bergin MW, Roesler EC, Shah GN, Price TO, et al. Metformin and topiramate improve learning and memory in diabetic mice and samp8 mice model of alzheimer’s disease. Alzheimers Dement 10(4): 477-8. (2014)
[141]
Matthes F, Hettich MM, Ryan DP, Ehninger D, Krauss S. The anti-diabetic drug metformin improves cognitive impairment and reduces amyloid-beta in a mouse model of Alzheimer’s disease. Alzheimers Dement 11(7): 845. (2015)
[142]
Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis 51(2): 501-14. (2016)
[143]
Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the insulin sensitizer metformin in alzheimer’s disease: pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord 31(2): 107-13. (2017)
[144]
Frölich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105(4-5): 423-38. (1998)
[145]
Stanley M, Macauley SL, Holtzman DM. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J Exp Med 213(8): 1375-85. (2016)
[146]
Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1): 29-38. (2012)
[147]
Suzanne M. Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer’s disease therapeutics. Aging Health 8(1): 61-4. (2012)
[148]
Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis 44(3): 897-906. (2015)
[149]
Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J Alzheimers Dis 57(4): 1325-34. (2017)
[150]
Talbot K, Wang HY. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer’s disease. Alzheimers Dement 10(1): S12-25. (2014)
[151]
Bae C, Song J. The role of glucagon-like peptide 1 (GLP1) in type 3 diabetes: GLP-1 controls insulin resistance, neuroinflammation and neurogenesis in the brain. Int J Mol Sci 18(11): 2493. (2017)
[152]
Gejl M, Gjedde A, Egefjord L, Møller A, Hansen SB, Vang K, et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci 8: 108. (2016)
[153]
McClean PL, Hölscher C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology 86: 241-58. (2014)
[154]
Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract 60(11): 1454-70. (2006)
[155]
Angelopoulou E, Piperi C. DPP-4 inhibitors: a promising therapeutic approach against Alzheimer’s disease. Ann Transl Med 6(12): 255. (2018)
[156]
Dong Y, Undyala VV, Gottlieb RA, Mentzer RM Jr, Przyklenk K. Autophagy: definition, molecular machinery, and potential role in myocardial ischemia-reperfusion injury. J Cardiovasc Pharmacol Ther 15(3): 220-30. (2010)
[157]
Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2): 113-22. (2005)
[158]
Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, et al. Macroautophagy-a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1): 87-98. (2005)
[159]
Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(23): 4081-91. (2007)
[160]
Li Q, Liu Y, Sun M. Autophagy and Alzheimer’s disease. Cell Mol Neurobiol 37(3): 377-88. (2017)
[161]
Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease-locating the primary defect. Neurobiol Dis 43(1): 38-45. (2011)
[162]
Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41(5): 1103-30. (2013)
[163]
Liang JH, Jia JP. Dysfunctional autophagy in Alzheimer’s disease: pathogenic roles and therapeutic implications. Neurosci Bull 30(2): 308-16. (2014)
[164]
Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5(4): e9979. (2010)
[165]
Cai Z, Yan LJ. Rapamycin, autophagy, and Alzheimer’s disease. J Biochem Pharmacol Res 1(2): 84-90. (2013)
[166]
Lin AL, Jahrling JB, Zhang W, DeRosa N, Bakshi V, Romero P, et al. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer’s disease. J Cereb Blood Flow Metab 37(1): 217-26. (2017)
[167]
Fleming A, Noda T, Yoshimori T, Rubinsztein DC. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7(1): 9-17. (2011)
[168]
Li L, Zhang S, Zhang X, Li T, Tang Y, Liu H, et al. Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer’s disease. Curr Alzheimer Res 10(4): 433-41. (2013)
[169]
Zhang L, Wang L, Wang R, Gao Y, Che H, Pan Y, et al. Evaluating the effectiveness of GTM-1, rapamycin, and carbamazepine on autophagy and Alzheimer disease. Med Sci Monit 23: 801-8. (2017)
[170]
Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 285(15): 11061-7. (2010)
[171]
Francis PT, Ramírez MJ, Lai MK. Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology 59(4-5): 221-9. (2010)
[172]
Upton N, Chuang TT, Hunter AJ, Virley DJ. 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 5(3): 458-69. (2008)
[173]
Khoury R, Grysman N, Gold J, Patel K, Grossberg GT. The Role of 5 HT6-Receptor Antagonists in Alzheimer’s Disease: An Update. Expert Opin Investig Drugs 27(6): 523-33. (2018)
[174]
Arnt J, Bang-Andersen B, Grayson B, Bymaster FP, Cohen MP, DeLapp NW, et al. Lu AE58054, a 5-HT6 antagonist, reverses cognitive impairment induced by subchronic phencyclidine in a novel object recognition test in rats. Int J Neuropsychopharmacol 13(8): 1021-33. (2010)
[175]
Callaghan CK, Hok V, Della-Chiesa A, Virley DJ, Upton N, O’mara SM. Age-related declines in delayed non-match-to-sample performance (DNMS) are reversed by the novel 5HT6 receptor antagonist SB742457. Neuropharmacology 63(5): 890-7. (2012)
[176]
De Bruin NM, Van Drimmelen M, Kops M, van Elk J, Middelveld-van de Wetering M, Schwienbacher I. Effects of risperidone, clozapine and the 5-HT6 antagonist GSK-742457 on PCP-induced deficits in reversal learning in the two-lever operant task in male Sprague Dawley rats. Behav Brain Res 244: 15-28. (2013)
[177]
] Intepirdine. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/intepirdine
[178]
Atri A, Frölich L, Ballard C, Tariot PN, Molinuevo JL, Boneva N, et al. Effect of idalopirdine as adjunct to cholinesterase inhibitors on change in cognition in patients with Alzheimer disease: three randomized clinical trials. JAMA 319(2): 130-42. (2018)
[179]
He P, Ouyang X, Zhou S, Yin W, Tang C, Laudon M, et al. A novel melatonin agonist Neu-P11 facilitates memory performance and improves cognitive impairment in a rat model of Alzheimer’disease. Horm Behav 64(1): 1-7. (2013)
[180]
Diao L, Hellier JL, Uskert-Newsom J, Williams PA, Staley KJ, Yee AS. Diphenytoin, riluzole and lidocaine: three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity. Neuropharmacology 73: 48-55. (2013)
[181]
dos Santos Frizzo ME, Dall’Onder LP, Dalcin KB, Souza DO. Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol Neurobiol 24(1): 123-8. (2004)
[182]
Mokhtari Z, Baluchnejadmojarad T, Nikbakht F, Mansouri M, Roghani M. Riluzole ameliorates learning and memory deficits in Aβ25-35-induced rat model of Alzheimer’s disease and is independent of cholinoceptor activation. Biomed Pharmacother 87: 135-44. (2017)
[183]
Kakuta H, Kurosaki E, Niimi T, Gato K, Kawasaki Y, Suwa A, et al. Distinct properties of telmisartan on agonistic activities for peroxisome proliferator-activated receptor γ among clinically used angiotensin II receptor blockers: Drug-target interaction analyses. J Pharmacol Exp Ther 349(1): 10-20. (2014)
[184]
AVP-786. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/avp-786
[185]
Villard V, Espallergues J, Keller E, Vamvakides A, Maurice T. Anti-amnesic and neuroprotective potentials of the mixed muscarinic receptor/sigma1 (σ1) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative. J Psychopharmacol 25(8): 1101-17. (2011)
[186]
Jo SY, Jung IH, Yi JH, Choi TJ, Lee S, Jung JW, et al. Ethanol extract of the seed of Zizyphus jujuba var. spinosa potentiates hippocampal synaptic transmission through mitogen-activated protein kinase, adenylyl cyclase, and protein kinase A pathways. J Ethnopharmacol 200: 16-21. (2017)
[187]
Lee WT, Chen C, Lim YA. Effects of neuroaid ii (mlc901) on app processing and tau phosphorylation. Alzheimers Dement 12(7): 620-1. (2016)
[188]
Resveratrol. In: Alzheimer Research Forum (Alzforum). Available : https://www.alzforum.org/therapeutics/resveratrol
[189]
Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement 4: 195-214. (2018)
[190]
Agis-Torres A, Sollhuber M, Fernandez M, Sanchez-Montero JM. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr Neuropharmacol 12(1): 2-36. (2014)
[191]
Ambure P, Bhat J, Puzyn T, Roy K. Identifying natural compounds as multi-target-directed ligands against Alzheimer’s disease: an in silico approach. J Biomol Struct Dyn 1-25. (2018)
[192]
Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4: e252. (2015)
[193]
Loring JF, Wen X, Lee JM, Seilhamer J, Somogyi R. A gene expression profile of Alzheimer’s disease. DNA Cell Biol 20(11): 683-95. (2001)
[194]
Lau P, Bossers K, Salta E, Frigerio CS, Barbash S, Rothman R, et al. Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 5(10): 1613-34. (2013)
[195]
Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14(1): 27-41. (2008)
[196]
Miya Shaik M, Tamargo I, Abubakar M, Kamal M, Greig N, Gan S. The role of microRNAs in Alzheimer’s disease and their therapeutic potentials. Genes 9(4): 174. (2018)
[197]
Singer O, Marr RA, Rockenstein E, Crews L, Coufal NG, Gage FH, et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 8(10): 1343-9. (2005)
[198]
Wang P, Zheng X, Guo Q, Yang P, Pang X, Qian K, et al. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J Control Release 279: 220-33. (2018)
[199]
Manczak M, Reddy PH. RNA silencing of genes involved in Alzheimer’s disease enhances mitochondrial function and synaptic activity. Biochim Biophys Acta 1832(12): 2368-78. (2013)
[200]
BIIB080. In: Alzheimer Research Forum (Alzforum). Available from: https://www.alzforum.org/therapeutics/biib080
[201]
Alawdi SH, El-Denshary ES, Safar MM, Eidi H, David MO, Abdel-Wahhab MA. Neuroprotective effect of nanodiamond in Alzheimer’s disease rat model: A pivotal role for modulating NF-κB and STAT3 signaling. Mol Neurobiol 54(3): 1906-18. (2017)
[202]
Bazzari AH, Bazzari FH. Medicinal plants for Alzheimer’s disease: an updated review. J Med Plants Stud 6(2): 81-5. (2018)
[203]
Shin JY, Park HJ, Kim HN, Oh SH, Bae JS, Ha HJ, et al. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10(1): 32-44. (2014)
[204]
Arendash GW, Cao C, Tan J. Prevention and treatment of Alzheimer'S disease through electromagnetic field exposure. US Patent 9,238,149, (2016)
[205]
Lu Y, Wang R, Dong Y, Tucker D, Zhao N, Ahmed ME, et al. Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol Aging 49: 165-82. (2017)
[206]
King A. The search for better animal models of Alzheimer’s disease. Nature 559: S13-5. (2018)
[207]
Drummond E, Wisniewski T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol 133(2): 155-75. (2017)
[208]
Gong CX, Liu F, Iqbal K. Multifactorial hypothesis and multi-targets for alzheimer’s disease. J Alzheimers Dis 64(1): S107-17. (2018)
[209]
De Strooper B, Karran E. The cellular phase of Alzheimer’s disease. Cell 164(4): 603-15. (2016)
[210]
Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VL, et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 16(9): 564-74. (2015)


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2019
Page: [261 - 277]
Pages: 17
DOI: 10.2174/1567205016666190301111120
Price: $58

Article Metrics

PDF: 40
HTML: 8
EPUB: 1
PRC: 1