Conformational Preferences of Aβ25-35 and Aβ35-25 in Membrane Mimicking Environments

Author(s): Dhandayuthapani Sambasivam, Senthilkumar Sivanesan, Sayeeda Sultana, Jayakumar Rajadas*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The structural transition of aggregating Abeta peptides is the key event in the progression of Alzheimer’s Disease (AD).

Objective: In the present work, the structural modifications of toxic Aβ25-35 and the scrambled Aβ35-25 were studied in Trifluoroethanol (TFE) and in aqueous SDS micelles.

Methods: Using CD spectroscopic investigations, the conformational transition of Aβ25-35 and Aβ35-25 peptides were determined in different membrane mimicking environments such as TFE and SDS. An interval scan CD of the peptides on evaporation of TFE was performed. TFE titrations were carried out to investigate the intrinsic ability of the structural conformations of peptides.

Results: We show by spectroscopic evidence that Aβ25-35 prefers beta sheet structures upon increasing TFE concentrations. On the other hand, the non-toxic scrambled Aβ35-25 peptide only undergoes a transition from random coil to α-helix conformation with increasing TFE. In the interval scan studies, Aβ25-35 did not show any structural transitions, whereas Aβ35-25 showed transition from α-helix to β-sheet conformation. In membrane simulating aqueous SDS micelles, Aβ25-35 showed a transition from random coil to α-helix while Aβ35-25 underwent transition from random coil to β-sheet conformation.

Conclusion: Overall, the current results seek new insights into the structural properties of amyloidogenic and the truncated sequence in membrane mimicking solvents.

Keywords: Alzheimer's disease, aggregation, conformation, amyloid fragments, membrane environment, membrane mimicking solvents.

[1]
Cuello, A.C. Intracellular and extracellular Abeta, a tale of two neuropathologies Brain Pathol, 2005, 15(1), 66-71.
[2]
Gouras, G.K.; Tsai, J.; Naslund, J.; Vincent, B.; Edgar, M.; Checler, F.; Greenfield, J.P.; Haroutunian, V.; Buxbaum, J.D.; Xu, H.; Greengard, P.; Relkin, N.R. Intraneuronal Abeta42 accumulation in human brain. Am. J. Pathol., 2000, 156(1), 15-20.
[3]
Walsh, D.M.; Tseng, B.P.; Rydel, R.E.; Podlisny, M.B.; Selkoe, D.J. The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry, 2000, 39(1), 10831-10839.
[4]
Sivanesan, S.; Tan, A.; Rajadas, J. Pathogenesis of Abeta oligomers in synaptic failure. Curr. Alzheimer Res., 2013, 10(3), 316-323.
[5]
Matsumura, S.; Shinoda, K.; Yamada, M.; Yokojima, Inoue, S.; M.; Ohnishi, T.; Shimada, T.; Kikuchi, K.; Masui, D.; Hashimoto, S.; Sato, M.; Ito, A.; Akioka, M.; Takagi, S.; Nakamura, Y.; Nemoto, K.; Hasegawa, Y.; Takamoto, H.; Inoue, H.; Nakamura, S.; Nabeshima, Y.; Teplow, D.B.; Kinjo, M.; Hoshi, M. Two distinct amyloid beta-protein (Abeta) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses. J. Biol. Chem, 2011, 286(1), 11555-11562.
[6]
Strodel, B.; Lee, J.W.; Whittleston, C.S.; Wales, D.J. Transmembrane structures for Alzheimer's Aβ(1-42) oligomers. J. Am. Chem. Soc, 2010, 132, 13300-13312.
[7]
Ono, K.; Condron, M.M.; Teplow, D.B. Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc. Natl. Acad. Sci. USA, 2009, 106(1), 14745-14750.
[8]
Shanmugam, G.; Polavarapu, P.L. Structure of A beta(25-35) peptide in different environments. Biophys. J., 2004, 87, 622-630.
[9]
Pike, C.J.; Walencewicz-Wasserman, A.J.; Kosmoski, J.; Cribbs, D.H.; Glabe, C.G.; Cotman, C.W. Structure-activity analyses of β-amyloid peptides: Contributions of the β 25-35 region to aggregation and neurotoxicity. J. Neurochem., 1995, 64, 253-265.
[10]
Misiti, F.; Sampaolese, B.; Pezzotti, M.; Marini, S.; Coletta, M.; Ceccarelli, L.; Giardina, B.; Clementi, M.E. Aβ31–35 peptide induces apoptosis in pc 12 cells: Contrast with Aβ25–35 peptide and examination of underlying mechanisms. Neurochem. Int., 2005, 46(1), 575-583.
[11]
Kohno, T.; Kobayashi, K.; Maeda, T.; Sato, K.; Takashima, A. Three-dimensional structures of the amyloid β peptide (25-35) in membrane-mimicking environment. Biochemistry, 1996, 35, 16094-16104.
[12]
D’Ursi, A.M.; Armenante, M.R.; Guerrini, R.; Salvadori, S.; Sorrentino, G.; Picone, D. Solution structure of amyloid β-peptide (25-35) in different media. J. Med. Chem., 2004, 47(1), 4231-4238.
[13]
El-Agnaf, O.M.; Irvine, G.B.; Fitzpatrick, G.; Glass, W.K.; Guthrie, D.J. Comparative studies on peptides representing the so-called tachykinin-like region of the Alzheimer Aβ peptide Aβ(25-35). Biochem. J., 1998, 336, 419-427.
[14]
Zagorski, M.; Barrow, C. NMR studies of amyloid β-peptide: Proton assignments, secondary structure and mechanism of an α-helix-β-sheet conversion for a homologous, 28 residue, N-terminal fragment. Biochemistry, 1992, 31(1), 5621-5631.
[15]
Shao, H.; Jao, S.; Ma, J.; Zagorski, M. Solution structures of micelle-bound amyloid β-(1-40) and β-(1-42) peptides of Alzheimer’s disease. J. Mol. Biol., 1999, 285(1), 755-773.
[16]
Inayathullah, M.; Rajadas, J. Effect of osmolytes on the conformation and aggregation of some amyloid peptides: CD spectroscopic data. Data Brief, 2016, 7, 1643-1651.
[17]
Inayathullah, M.; Rajadas, J. Conformational dynamics of a hydrophobic prion fragment (113-127) in different pH and osmolyte solutions. Neuropeptides, 2016, 57, 9-14.
[18]
Laczko, I.; Holly, S.; Konya, Z.; Soos, K.; Varga, J.L.; Hollosi, M.; Penke, B. Conformational mapping of amyloid peptides from the putative neurotoxic 25-35 region. Biochem. Biophys. Res. Commun., 1994, 205, 120-126.
[19]
Fezoui, Y.; Teplow, D.B. Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J. Biol. Chem., 2002, 277, 36948-36954.
[20]
Buck, M. Trifluoroethanol and colleagues: Co-solvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys., 1998, 31, 297-355.
[21]
Satheeshkumar, K.S.; Murali, J.; Jayakumar, R. Assemblages of prion fragments: Novel model systems for understanding amyloid toxicity. J. Struct. Biol., 2004, 148, 176-193.
[22]
Yonath, A.; Podjarny, A.; Honig, B.; Sielecki, A.; Traub, W. Crystallographic studies of protein denaturation and renaturation. Sodium dodecyl sulfate induced structural changes in triclinic lysozyme. Biochemistry, 1977, 16, 1418-1424.
[23]
Huibers, P.D.T. Quantum-chemical calculations of the charge distribution in ionic surfactants. Langmuir, 1999, 15(1), 7546-7550.
[24]
Bag, S.; Chaudhury, S.; Pramanik, D.; DasGupta, S. Hydrophobic tail length plays a pivotal role in amyloid beta (25-35) fibril-surfactant interactions. Proteins, 2016, 84(9), 1213-1223.
[25]
Shabestari, M.H.; Meeuwenoord, N.J.; Filippov, D.V.; Huber, M. Interaction of the amyloid β peptide with sodium dodecyl sulfate as a membrane-mimicking detergent. J. Biol. Phys., 2016, 42(3), 299-315.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 5
Year: 2019
Page: [386 - 390]
Pages: 5
DOI: 10.2174/0929866526666190228122849
Price: $65

Article Metrics

PDF: 10
HTML: 3