Far-infrared Ray-mediated Antioxidant Potentials are Important for Attenuating Psychotoxic Disorders

Author(s): Naveen Sharma , Eun-Joo Shin , Nam Hun Kim , Eun-Hee Cho , Bao Trong Nguyen , Ji Hoon Jeong , Choon Gon Jang , Seung-Yeol Nah , Hyoung-Chun Kim* .

Journal Name: Current Neuropharmacology

Volume 17 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Far-infrared ray (FIR) is an electromagnetic wave that produces various health benefits against pathophysiological conditions, such as diabetes mellitus, renocardiovascular disorders, stress, and depression etc. However, the therapeutic application on the FIR-mediated protective potentials remains to be further extended. To achieve better understanding on FIR-mediated therapeutic potentials, we summarized additional findings in the present study that exposure to FIR ameliorates stressful condition, memory impairments, drug dependence, and mitochondrial dysfunction in the central nervous system. In this review, we underlined that FIR requires modulations of janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3), nuclear factor E2- related factor 2 (Nrf-2), muscarinic M1 acetylcholine receptor (M1 mAChR), dopamine D1 receptor, protein kinase C δ gene, and glutathione peroxidase-1 gene for exerting the protective potentials in response to neuropsychotoxic conditions.

Keywords: Far-infrared ray, nuclear factor E2-related factor 2, glutathione peroxidase-1, JAK2/STAT3, M1 mAChR, dopamine D1 receptor, protein kinase C δ gene, neuropsychotoxic conditions.

[1]
Vatansever, F.; Hamblin, M.R. Far infrared radiation (FIR): its biological effects and medical applications. Photonics Lasers Med., 2012, 4, 255-266.
[http://dx.doi.org/10.1515/plm-2012-0034] [PMID: 23833705]
[2]
Toyokawa, H.; Matsui, Y.; Uhara, J.; Tsuchiya, H.; Teshima, S.; Nakanishi, H.; Kwon, A.H.; Azuma, Y.; Nagaoka, T.; Ogawa, T.; Kamiyama, Y. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med. (Maywood), 2003, 228(6), 724-729.
[http://dx.doi.org/10.1177/153537020322800612] [PMID: 12773705]
[3]
Li, K.; Xia, L.; Liu, N.F.; Nicoli, F.; Constantinides, J.; D’Ambrosia, C.; Lazzeri, D.; Tremp, M.; Zhang, J.F.; Zhang, Y.X. Far infrared ray (FIR) therapy: An effective and oncological safe treatment modality for breast cancer related lymphedema. J. Photochem. Photobiol. B, 2017, 172, 95-101.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.011] [PMID: 28535427]
[4]
Eells, J.T.; Wong-Riley, M.T.; VerHoeve, J.; Henry, M.; Buchman, E.V.; Kane, M.P.; Gould, L.J.; Das, R.; Jett, M.; Hodgson, B.D.; Margolis, D.; Whelan, H.T. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion, 2004, 4(5-6), 559-567.
[http://dx.doi.org/10.1016/j.mito.2004.07.033] [PMID: 16120414]
[5]
Plaghki, L.; Decruynaere, C.; Van Dooren, P.; Le Bars, D. The fine tuning of pain thresholds: a sophisticated double alarm system. PLoS One, 2010, 5(4)e10269
[http://dx.doi.org/10.1371/journal.pone.0010269] [PMID: 20428245]
[6]
Niwa, Y.; Miyachi, Y.; Ishimoto, K.; Kanoh, T. Why are natural plant medicinal products effective in some patients and not in others with the same disease? Planta Med., 1991, 57(4), 299-304.
[http://dx.doi.org/10.1055/s-2006-960102] [PMID: 1775568]
[7]
Escobedo, R.; Miranda, R.; Martínez, J. Infrared Irradiation: Toward Green Chemistry, a Review. Int. J. Mol. Sci., 2016, 17(4), 453.
[http://dx.doi.org/10.3390/ijms17040453] [PMID: 27023535]
[8]
Pasquini, C. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc., 2003, 14, 198-219.
[http://dx.doi.org/10.1590/S0103-50532003000200006]
[9]
Habib, M.E.; Punnoose, T.; Thomas, C. Deep burns caused by far-infrared rays in a chiropractic sales centre. Ann. Burns Fire Disasters, 2007, 20(2), 104-106.
[PMID: 21991078]
[10]
Karu, T.I.; Pyatibrat, L.V.; Kolyakov, S.F.; Afanasyeva, N.I. Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed. Laser Surg., 2008, 26(6), 593-599.
[http://dx.doi.org/10.1089/pho.2008.2246] [PMID: 19099388]
[11]
Shui, S.; Wang, X.; Chiang, J.Y.; Zheng, L. Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: A systematic review. Exp. Biol. Med. (Maywood), 2015, 240(10), 1257-1265.
[http://dx.doi.org/10.1177/1535370215573391] [PMID: 25716016]
[12]
Yu, S.Y.; Chiu, J.H.; Yang, S.D.; Hsu, Y.C.; Lui, W.Y.; Wu, C.W. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol. Photoimmunol. Photomed., 2006, 22(2), 78-86.
[http://dx.doi.org/10.1111/j.1600-0781.2006.00208.x] [PMID: 16606412]
[13]
Tei, C. Waon therapy: soothing warmth therapy. J. Cardiol., 2007, 49(6), 301-304.
[PMID: 17633566]
[14]
Tei, C.; Horikiri, Y.; Park, J.C.; Jeong, J.W.; Chang, K.S.; Toyama, Y.; Tanaka, N. Acute hemodynamic improvement by thermal vasodilation in congestive heart failure. Circulation, 1995, 91(10), 2582-2590.
[http://dx.doi.org/10.1161/01.CIR.91.10.2582] [PMID: 7743620]
[15]
Ishi, K.; Shibata, Y.; Takahashi, T.; Mishiro, H.; Ohsaka, T.; Ikezawa, M.; Kondo, Y.; Nakazato, T.; Urasawa, S.; Niimura, N.; Kato, R.; Shibasaki, Y.; Oyamada, M. Spectrum of coherent synchrotron radiation in the far-infrared region. Phys. Rev. A, 1991, 43(10), 5597-5604.
[http://dx.doi.org/10.1103/PhysRevA.43.5597] [PMID: 9904873]
[16]
Lin, C.C.; Chang, C.F.; Lai, M.Y.; Chen, T.W.; Lee, P.C.; Yang, W.C. Far-infrared therapy: a novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. J. Am. Soc. Nephrol., 2007, 18(3), 985-992.
[http://dx.doi.org/10.1681/ASN.2006050534] [PMID: 17267744]
[17]
Ko, G.D.; Berbrayer, D. Effect of ceramic-impregnated “thermoflow” gloves on patients with Raynaud’s syndrome: randomized, placebo-controlled study. Altern. Med. Rev., 2002, 7(4), 328-335.
[PMID: 12197784]
[18]
Mai, H.N.; Sharma, N.; Shin, E.J.; Nguyen, B.T.; Jeong, J.H.; Jang, C.G.; Cho, E.H.; Nah, S.Y.; Kim, N.H.; Nabeshima, T.; Kim, H.C. Exposure to far infrared ray protects methamphetamine-induced behavioral sensitization in glutathione peroxidase-1 knockout mice via attenuating mitochondrial burdens and dopamine D1 receptor activation. Neurochem. Res., 2018, 43(5), 1118-1135.
[http://dx.doi.org/10.1007/s11064-018-2528-5] [PMID: 29687308]
[19]
Mai, H.N.; Sharma, N.; Shin, E.J.; Nguyen, B.T.; Nguyen, P.T.; Jeong, J.H.; Jang, C.G.; Cho, E.H.; Nah, S.Y.; Kim, N.H.; Nabeshima, T.; Kim, H.C. Exposure to far-infrared rays attenuates methamphetamine-induced recognition memory impairment via modulation of the muscarinic M1 receptor, Nrf2, and PKC. Neurochem. Int., 2018, 116, 63-76.
[http://dx.doi.org/10.1016/j.neuint.2018.03.009] [PMID: 29572053]
[20]
Mai, H.N.; Sharma, N.; Shin, E.J.; Nguyen, B.T.; Nguyen, P.T.; Jeong, J.H.; Cho, E.H.; Lee, Y.J.; Kim, N.H.; Jang, C.G.; Nabeshima, T.; Kim, H.C. Exposure to far-infrared ray attenuates methamphetamine-induced impairment in recognition memory through inhibition of protein kinase C δ in male mice: Comparison with the antipsychotic clozapine. J. Neurosci. Res., 2018, 96(7), 1294-1310.
[http://dx.doi.org/10.1002/jnr.24228] [PMID: 29476655]
[21]
Tran, T.H.; Mai, H.N.; Shin, E.J.; Nam, Y.; Nguyen, B.T.; Lee, Y.J.; Jeong, J.H.; Tran, H.Y.; Cho, E.H.; Nah, S.Y.; Lei, X.G.; Nabeshima, T.; Kim, N.H.; Kim, H.C. Repeated exposure to far infrared ray attenuates acute restraint stress in mice via inhibition of JAK2/STAT3 signaling pathway by induction of glutathione peroxidase-1. Neurochem. Int., 2016, 94, 9-22.
[http://dx.doi.org/10.1016/j.neuint.2016.02.001] [PMID: 26850477]
[22]
Udagawa, Y.; Nagasawa, H. Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice. In Vivo, 2000, 14(2), 321-326.
[PMID: 10836204]
[23]
Zhang, L.; Chan, P.; Liu, Z.M.; Hwang, L.L.; Lin, K.C.; Chan, W.P.; Leung, T.K.; Choy, C.S. The effect of photoluminescence of bioceramic irradiation on middle cerebral arterial occlusion in rats. Evid. Based Complement. Alternat. Med., 2016, 20167230962
[http://dx.doi.org/10.1155/2016/7230962] [PMID: 27375765]
[24]
Leung, T.K. In vitro and in vivo studies of the biological effects of bioceramic (a material of emitting high performance far-infrared ray) irradiation. Chin. J. Physiol., 2015, 58(3), 147-155.
[http://dx.doi.org/10.4077/CJP.2015.BAD294] [PMID: 26014120]
[25]
Meng, J.; Jin, W.; Liang, J.; Ding, Y.; Gan, K.; Yuan, Y. Effects of particle size on far infrared emission properties of tourmaline superfine powders. J. Nanosci. Nanotechnol., 2010, 10(3), 2083-2087.
[http://dx.doi.org/10.1166/jnn.2010.2072] [PMID: 20355631]
[26]
Yoo, B.H.; Park, C.M.; Oh, T.J.; Han, S.H.; Kang, H.H.; Chang, I.S. Investigation of jewelry powders radiating far-infrared rays and the biological effects on human skin. J. Cosmet. Sci., 2002, 53(3), 175-184.
[PMID: 12053208]
[27]
Rao, J.; Paabo, K.E.; Goldman, M.P. A double-blinded randomized trial testing the tolerability and efficacy of a novel topical agent with and without occlusion for the treatment of cellulite: a study and review of the literature. J. Drugs Dermatol., 2004, 3(4), 417-425.
[PMID: 15303786]
[28]
Loturco, I.; Abad, C.; Nakamura, F.Y.; Ramos, S.P.; Kobal, R.; Gil, S.; Pereira, L.A.; Burini, F.; Roschel, H.; Ugrinowitsch, C.; Tricoli, V. Effects of far infrared rays emitting clothing on recovery after an intense plyometric exercise bout applied to elite soccer players: a randomized double-blind placebo-controlled trial. Biol. Sport, 2016, 33(3), 277-283.
[http://dx.doi.org/10.5604/20831862.1208479] [PMID: 27601783]
[29]
Lin, C.C.; Liu, X.M.; Peyton, K.; Wang, H.; Yang, W.C.; Lin, S.J.; Durante, W. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler. Thromb. Vasc. Biol., 2008, 28(4), 739-745.
[http://dx.doi.org/10.1161/ATVBAHA.107.160085] [PMID: 18202320]
[30]
Nagasawa, H.; Udagawa, Y.; Kiyokawa, S. Evidence that irradiation of far-infrared rays inhibits mammary tumour growth in SHN mice. Anticancer Res., 1999, 19(3A), 1797-1800.
[PMID: 10470118]
[31]
Miyata, M.; Tei, C. Waon therapy for cardiovascular disease: innovative therapy for the 21st century. Circ. J., 2010, 74(4), 617-621.
[http://dx.doi.org/10.1253/circj.CJ-09-0939] [PMID: 20154403]
[32]
Lai, C.C.; Fang, H.C.; Mar, G.Y.; Liou, J.C.; Tseng, C.J.; Liu, C.P. Post-angioplasty far infrared radiation therapy improves 1-year angioplasty-free hemodialysis access patency of recurrent obstructive lesions. Eur. J. Vasc. Endovasc. Surg., 2013, 46(6), 726-732.
[http://dx.doi.org/10.1016/j.ejvs.2013.09.018] [PMID: 24119468]
[33]
Tsai, J.F.; Hsiao, S.; Wang, S.Y. Infrared irradiation has potential antidepressant effect. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(7), 1397-1400.
[http://dx.doi.org/10.1016/j.pnpbp.2007.06.006] [PMID: 17618028]
[34]
Chiang, C.; Romero, L. Cutaneous lymphoid hyperplasia (pseudolymphoma) in a tattoo after far infrared light. Dermatol. Surg., 2009, 35(9), 1434-1438.
[http://dx.doi.org/10.1111/j.1524-4725.2009.01254.x] [PMID: 19549070]
[35]
Conrado, L.A.; Munin, E. Reduction in body measurements after use of a garment made with synthetic fibers embedded with ceramic nanoparticles. J. Cosmet. Dermatol., 2011, 10(1), 30-35.
[http://dx.doi.org/10.1111/j.1473-2165.2010.00537.x] [PMID: 21332913]
[36]
Biro, S.; Masuda, A.; Kihara, T.; Tei, C. Clinical implications of thermal therapy in lifestyle-related diseases. Exp. Biol. Med. (Maywood), 2003, 228(10), 1245-1249.
[http://dx.doi.org/10.1177/153537020322801023] [PMID: 14610268]
[37]
Stewart, J.; Manmathan, G.; Wilkinson, P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc. Dis., 2017.62048004016687211
[http://dx.doi.org/10.1177/2048004016687211] [PMID: 28286646]
[38]
Fuster, V.; Kelly, B.B. In promoting cardiovascular health in the developing world: a critical challenge to achieve global health., 2010.
[39]
Dantas, A.P.; Jiménez-Altayó, F.; Vila, E. Vascular aging: facts and factors. Front. Physiol., 2012, 3, 325.
[http://dx.doi.org/10.3389/fphys.2012.00325] [PMID: 22934073]
[40]
Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; Lisheng, L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 2004, 364(9438), 937-952.
[http://dx.doi.org/10.1016/S0140-6736(04)17018-9] [PMID: 15364185]
[41]
Imamura, M.; Biro, S.; Kihara, T.; Yoshifuku, S.; Takasaki, K.; Otsuji, Y.; Minagoe, S.; Toyama, Y.; Tei, C. Repeated thermal therapy improves impaired vascular endothelial function in patients with coronary risk factors. J. Am. Coll. Cardiol., 2001, 38(4), 1083-1088.
[http://dx.doi.org/10.1016/S0735-1097(01)01467-X] [PMID: 11583886]
[42]
Anggård, E. Nitric oxide: mediator, murderer, and medicine. Lancet, 1994, 343(8907), 1199-1206.
[http://dx.doi.org/10.1016/S0140-6736(94)92405-8] [PMID: 7909873]
[43]
Ikeda, Y.; Biro, S.; Kamogawa, Y.; Yoshifuku, S.; Eto, H.; Orihara, K.; Yu, B.; Kihara, T.; Miyata, M.; Hamasaki, S.; Otsuji, Y.; Minagoe, S.; Tei, C. Repeated sauna therapy increases arterial endothelial nitric oxide synthase expression and nitric oxide production in cardiomyopathic hamsters. Circ. J., 2005, 69(6), 722-729.
[http://dx.doi.org/10.1253/circj.69.722] [PMID: 15914953]
[44]
Park, J.H.; Lee, S.; Cho, D.H.; Park, Y.M.; Kang, D.H.; Jo, I. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochem. Biophys. Res. Commun., 2013, 436(4), 601-606.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.003] [PMID: 23756809]
[45]
Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302), 964-967.
[http://dx.doi.org/10.1126/science.275.5302.964] [PMID: 9020076]
[46]
Vasa, M.; Fichtlscherer, S.; Aicher, A.; Adler, K.; Urbich, C.; Martin, H.; Zeiher, A.M.; Dimmeler, S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res., 2001, 89(1), E1-E7.
[http://dx.doi.org/10.1161/hh1301.093953] [PMID: 11440984]
[47]
Di Stefano, V.; Zaccagnini, G.; Capogrossi, M.C.; Martelli, F. microRNAs as peripheral blood biomarkers of cardiovascular disease. Vascul. Pharmacol., 2011, 55(4), 111-118.
[http://dx.doi.org/10.1016/j.vph.2011.08.001] [PMID: 21846509]
[48]
Kuehbacher, A.; Urbich, C.; Zeiher, A.M.; Dimmeler, S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res., 2007, 101(1), 59-68.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.153916] [PMID: 17540974]
[49]
Weber, M.; Baker, M.B.; Moore, J.P.; Searles, C.D. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem. Biophys. Res. Commun., 2010, 393(4), 643-648.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.045] [PMID: 20153722]
[50]
Ni, C.W.; Qiu, H.; Jo, H. MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2011, 300(5), H1762-H1769.
[http://dx.doi.org/10.1152/ajpheart.00829.2010] [PMID: 21378144]
[51]
Masuda, A.; Miyata, M.; Kihara, T.; Minagoe, S.; Tei, C. Repeated sauna therapy reduces urinary 8-epi-prostaglandin F(2alpha). Jpn. Heart J., 2004, 45(2), 297-303.
[http://dx.doi.org/10.1536/jhj.45.297] [PMID: 15090706]
[52]
Lin, C.H.; Lee, L.S.; Su, L.H.; Huang, T.C.; Liu, C.F. Thermal therapy in dialysis patients - a randomized trial. Am. J. Chin. Med., 2011, 39(5), 839-851.
[http://dx.doi.org/10.1142/S0192415X1100924X] [PMID: 21905276]
[53]
Dember, L.M.; Beck, G.J.; Allon, M.; Delmez, J.A.; Dixon, B.S.; Greenberg, A.; Himmelfarb, J.; Vazquez, M.A.; Gassman, J.J.; Greene, T.; Radeva, M.K.; Braden, G.L.; Ikizler, T.A.; Rocco, M.V.; Davidson, I.J.; Kaufman, J.S.; Meyers, C.M.; Kusek, J.W.; Feldman, H.I. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. JAMA, 2008, 299(18), 2164-2171.
[http://dx.doi.org/10.1001/jama.299.18.2164] [PMID: 18477783]
[54]
Chiang, I.N.; Pu, Y.S.; Huang, C.Y.; Young, T.H. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity. PLoS One, 2017, 12(7)e0180872
[http://dx.doi.org/10.1371/journal.pone.0180872] [PMID: 28715443]
[55]
Chen, C.F.; Yang, W.C.; Lin, C.C. An update of the effect of far infrared therapy on arteriovenous access in end-stage renal disease patients. J. Vasc. Access, 2016, 17(4), 293-298.
[http://dx.doi.org/10.5301/jva.5000561] [PMID: 27312759]
[56]
Chang, Y. The effect of far infrared radiation therapy on inflammation regulation in lipopolysaccharide-induced peritonitis in mice. SAGE Open Med., 2018, 62050312118798941
[http://dx.doi.org/10.1177/2050312118798941] [PMID: 30210795]
[57]
Diagnosis and classification of diabetes mellitus. Diabetes Care, 2010, 33(Suppl. 1), S62-S69.
[http://dx.doi.org/10.2337/dc10-S062] [PMID: 20042775]
[58]
Masuda, A.; Kihara, T.; Fukudome, T.; Shinsato, T.; Minagoe, S.; Tei, C. The effects of repeated thermal therapy for two patients with chronic fatigue syndrome. J. Psychosom. Res., 2005, 58(4), 383-387.
[http://dx.doi.org/10.1016/j.jpsychores.2004.11.005] [PMID: 15992574]
[59]
Kawaura, A.; Tanida, N.; Kamitani, M.; Akiyama, J.; Mizutani, M.; Tsugawa, N.; Okano, T.; Takeda, E. The effect of leg hyperthermia using far infrared rays in bedridden subjects with type 2 diabetes mellitus. Acta Med. Okayama, 2010, 64(2), 143-147.
[PMID: 20424670]
[60]
Wang, H.W.; Su, S.H.; Wang, Y.L.; Chang, S.T.; Liao, K.H.; Lo, H.H.; Chiu, Y.L.; Hsieh, T.H.; Huang, T.S.; Lin, C.S.; Cheng, S.M.; Cheng, C.C. MicroRNA-134 contributes to glucose-induced endothelial cell dysfunction and this effect can be reversed by far-infrared irradiation. PLoS One, 2016, 11(1)e0147067
[http://dx.doi.org/10.1371/journal.pone.0147067] [PMID: 26799933]
[61]
Chen, C.H.; Chen, T.H.; Wu, M.Y.; Chou, T.C.; Chen, J.R.; Wei, M.J.; Lee, S.L.; Hong, L.Y.; Zheng, C.M.; Chiu, I.J.; Lin, Y.F.; Hsu, C.M.; Hsu, Y.H. Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice. Sci. Rep., 2017, 7, 40442.
[http://dx.doi.org/10.1038/srep40442] [PMID: 28071754]
[62]
Beever, R. The effects of repeated thermal therapy on quality of life in patients with type II diabetes mellitus. J. Altern. Complement. Med., 2010, 16(6), 677-681.
[http://dx.doi.org/10.1089/acm.2009.0358] [PMID: 20569036]
[63]
Guzik, T.J.; West, N.E.; Black, E.; McDonald, D.; Ratnatunga, C.; Pillai, R.; Channon, K.M. Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ. Res., 2000, 86(9), E85-E90.
[http://dx.doi.org/10.1161/01.RES.86.9.e85] [PMID: 10807876]
[64]
Duplain, H.; Burcelin, R.; Sartori, C.; Cook, S.; Egli, M.; Lepori, M.; Vollenweider, P.; Pedrazzini, T.; Nicod, P.; Thorens, B.; Scherrer, U. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation, 2001, 104(3), 342-345.
[http://dx.doi.org/10.1161/01.CIR.104.3.342] [PMID: 11457755]
[65]
Tu, Y.P.; Chen, S.C.; Liu, Y.H.; Chen, C.F.; Hour, T.C. Postconditioning with far-infrared irradiation increases heme oxygenase-1 expression and protects against ischemia/reperfusion injury in rat testis. Life Sci., 2013, 92(1), 35-41.
[http://dx.doi.org/10.1016/j.lfs.2012.10.019] [PMID: 23142244]
[66]
Stocker, R.; Glazer, A.N.; Ames, B.N. Antioxidant activity of albumin-bound bilirubin. Proc. Natl. Acad. Sci. U S. Am.,, 1987, 84(16), 5918-22.
[http://dx.doi.org/10.1073/pnas.84.16.5918]
[67]
Akasaki, Y.; Miyata, M.; Eto, H.; Shirasawa, T.; Hamada, N.; Ikeda, Y.; Biro, S.; Otsuji, Y.; Tei, C. Repeated thermal therapy up-regulates endothelial nitric oxide synthase and augments angiogenesis in a mouse model of hindlimb ischemia. Circ. J., 2006, 70(4), 463-470.
[http://dx.doi.org/10.1253/circj.70.463] [PMID: 16565566]
[68]
Yue, W.S.; Lau, K.K.; Siu, C.W.; Wang, M.; Yan, G.H.; Yiu, K.H.; Tse, H.F. Impact of glycemic control on circulating endothelial progenitor cells and arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol., 2011, 10, 113.
[http://dx.doi.org/10.1186/1475-2840-10-113] [PMID: 22185563]
[69]
Huang, P.H.; Chen, J.W.; Lin, C.P.; Chen, Y.H.; Wang, C.H.; Leu, H.B.; Lin, S.J. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions. Cardiovasc. Diabetol., 2012, 11, 99.
[http://dx.doi.org/10.1186/1475-2840-11-99] [PMID: 22894755]
[70]
Hayashi, T.; Noshita, N.; Sugawara, T.; Chan, P.H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab., 2003, 23(2), 166-180.
[http://dx.doi.org/10.1097/01.WCB.0000041283.53351.CB] [PMID: 12571448]
[71]
Kokovay, E.; Li, L.; Cunningham, L.A. Angiogenic recruitment of pericytes from bone marrow after stroke. J. Cereb. Blood Flow Metab., 2006, 26(4), 545-555.
[http://dx.doi.org/10.1038/sj.jcbfm.9600214] [PMID: 16121128]
[72]
Hall, C.N.; Reynell, C.; Gesslein, B.; Hamilton, N.B.; Mishra, A.; Sutherland, B.A.; O’Farrell, F.M.; Buchan, A.M.; Lauritzen, M.; Attwell, D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 2014, 508(7494), 55-60.
[http://dx.doi.org/10.1038/nature13165] [PMID: 24670647]
[73]
Xie, Z.; Chen, F.; Li, W.A.; Geng, X.; Li, C.; Meng, X.; Feng, Y.; Liu, W.; Yu, F. A review of sleep disorders and melatonin. Neurol. Res., 2017, 39(6), 559-565.
[http://dx.doi.org/10.1080/01616412.2017.1315864] [PMID: 28460563]
[74]
Amihăesei, I.C.; Mungiu, O.C. Main neuroendocrine features and therapy in primary sleep troubles. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2012, 116(3), 862-866.
[PMID: 23272543]
[75]
Leger, D.; Laudon, M.; Zisapel, N. Nocturnal 6-sulfatoxymelatonin excretion in insomnia and its relation to the response to melatonin replacement therapy. Am. J. Med., 2004, 116(2), 91-95.
[http://dx.doi.org/10.1016/j.amjmed.2003.07.017] [PMID: 14715322]
[76]
Honda, K.; Inoué, S. Sleep-enhancing effects of far-infrared radiation in rats. Int. J. Biometeorol., 1988, 32(2), 92-94.
[http://dx.doi.org/10.1007/BF01044900] [PMID: 3410585]
[77]
Inoué, S.; Kabaya, M. Biological activities caused by far-infrared radiation. Int. J. Biometeorol., 1989, 33(3), 145-150.
[http://dx.doi.org/10.1007/BF01084598] [PMID: 2689357]
[78]
Dominguez-Vidal, A.; Kaun, N.; Ayora-Cañada, M.J.; Lendl, B. Probing intermolecular interactions in water/ionic liquid mixtures by far-infrared spectroscopy. J. Phys. Chem. B, 2007, 111(17), 4446-4452.
[http://dx.doi.org/10.1021/jp068777n] [PMID: 17408256]
[79]
Carney, C.E.; Edinger, J.D.; Kuchibhatla, M.; Lachowski, A.M.; Bogouslavsky, O.; Krystal, A.D.; Shapiro, C.M. Cognitive behavioral insomnia therapy for those with insomnia and depression: a randomized controlled clinical trial. Sleep (Basel), 2017, 40(4)
[http://dx.doi.org/10.1093/sleep/zsx019] [PMID: 28199710]
[80]
Tsuno, N.; Besset, A.; Ritchie, K. Sleep and depression. J. Clin. Psychiatry, 2005, 66(10), 1254-1269.
[http://dx.doi.org/10.4088/JCP.v66n1008] [PMID: 16259539]
[81]
Thase, M.E. Summary: defining remission in patients treated with antidepressants. J. Clin. Psychiatry, 1999, 60(Suppl. 22), 35-36.
[PMID: 10634354]
[82]
Belmaker, R.H.; Agam, G. Major depressive disorder. N. Engl. J. Med., 2008, 358(1), 55-68.
[http://dx.doi.org/10.1056/NEJMra073096] [PMID: 18172175]
[83]
Videbech, P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr. Scand., 2000, 101(1), 11-20.
[http://dx.doi.org/10.1034/j.1600-0447.2000.101001011.x] [PMID: 10674946]
[84]
Sahay, A.; Hen, R. Adult hippocampal neurogenesis in depression. Nat. Neurosci., 2007, 10(9), 1110-1115.
[http://dx.doi.org/10.1038/nn1969] [PMID: 17726477]
[85]
Gawryluk, J.W.; Wang, J.F.; Andreazza, A.C.; Shao, L.; Young, L.T. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol., 2011, 14(1), 123-130.
[http://dx.doi.org/10.1017/S1461145710000805] [PMID: 20633320]
[86]
Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 45, 54-63.
[http://dx.doi.org/10.1016/j.pnpbp.2013.04.009] [PMID: 23602950]
[87]
Salehpour, F.; Rasta, S.H. The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Rev. Neurosci., 2017, 28(4), 441-453.
[http://dx.doi.org/10.1515/revneuro-2016-0087] [PMID: 28231069]
[88]
Mechan, A.O.; Fowler, A.; Seifert, N.; Rieger, H.; Wöhrle, T.; Etheve, S.; Wyss, A.; Schüler, G.; Colletto, B.; Kilpert, C.; Aston, J.; Elliott, J.M.; Goralczyk, R.; Mohajeri, M.H. Monoamine reuptake inhibition and mood-enhancing potential of a specified oregano extract. Br. J. Nutr., 2011, 105(8), 1150-1163.
[http://dx.doi.org/10.1017/S0007114510004940] [PMID: 21205415]
[89]
Elhwuegi, A.S. Central monoamines and their role in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004, 28(3), 435-451.
[http://dx.doi.org/10.1016/j.pnpbp.2003.11.018] [PMID: 15093950]
[90]
Ozcan, M.E.; Gulec, M.; Ozerol, E.; Polat, R.; Akyol, O. Antioxidant enzyme activities and oxidative stress in affective disorders. Int. Clin. Psychopharmacol., 2004, 19(2), 89-95.
[http://dx.doi.org/10.1097/00004850-200403000-00006] [PMID: 15076017]
[91]
Chang, Y.; Liu, Y.P.; Liu, C.F. The effect on serotonin and MDA levels in depressed patients with insomnia when far-infrared rays are applied to acupoints. Am. J. Chin. Med., 2009, 37(5), 837-842.
[http://dx.doi.org/10.1142/S0192415X09007272] [PMID: 19885944]
[92]
Masuda, A.; Nakazato, M.; Kihara, T.; Minagoe, S.; Tei, C. Repeated thermal therapy diminishes appetite loss and subjective complaints in mildly depressed patients. Psychosom. Med., 2005, 67(4), 643-647.
[http://dx.doi.org/10.1097/01.psy.0000171812.67767.8f] [PMID: 16046381]
[93]
Rozanski, A.; Blumenthal, J.A.; Kaplan, J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation, 1999, 99(16), 2192-2217.
[http://dx.doi.org/10.1161/01.CIR.99.16.2192] [PMID: 10217662]
[94]
Scott, K.A.; Melhorn, S.J.; Sakai, R.R. Effects of chronic social stress on cbesity. Curr. Obes. Rep., 2012, 1(1), 16-25.
[http://dx.doi.org/10.1007/s13679-011-0006-3] [PMID: 22943039]
[95]
Keynejad, R.C.; Frodl, T.; Kanaan, R.; Pariante, C.; Reuber, M.; Nicholson, T.R. Stress and functional neurological disorders: mechanistic insights. J. Neurol. Neurosurg. Psychiatry., 2018, jnnp- 2018-318297.
[http://dx.doi.org/10.1136/jnnp-2018-318297] [PMID: 30409887]
[96]
Culić, V.; Silić, N.; Mirić, D. Triggering of ventricular ectopic beats by emotional, physical, and meteorologic stress: role of age, sex, medications, and chronic risk factors. Croat. Med. J., 2005, 46(6), 894-906.
[PMID: 16342342]
[97]
Whalen, E.J.; Johnson, A.K.; Lewis, S.J. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia. Eur. J. Pharmacol., 1999, 365(2-3), 217-223.
[http://dx.doi.org/10.1016/S0014-2999(98)00853-X] [PMID: 9988105]
[98]
Crane, J.W.; French, K.R.; Buller, K.M. Patterns of neuronal activation in the rat brain and spinal cord in response to increasing durations of restraint stress. Stress, 2005, 8(3), 199-211.
[http://dx.doi.org/10.1080/10253890500333817] [PMID: 16236624]
[99]
Bajić, D.; Loncar-Turukalo, T.; Stojicić, S.; Sarenac, O.; Bojić, T.; Murphy, D.; Paton, J.F.; Japundzić-Zigon, N. Temporal analysis of the spontaneous baroreceptor reflex during mild emotional stress in the rat. Stress, 2010, 13(2), 142-154.
[http://dx.doi.org/10.3109/10253890903089842] [PMID: 19929315]
[100]
Lakomkin, V.L.; Konovalova, G.G.; Kalenikova, E.I.; Zabbarova, I.V.; Tikhaze, A.K.; Tsyplenkova, V.G.; Lankin, V.Z.; Ruuge, E.K.; Kapelko, V.I. Protection of rat myocardium by coenzyme Q during oxidative stress induced by hydrogen peroxide. Biochemistry (Mosc.), 2004, 69(5), 520-526.
[http://dx.doi.org/10.1023/B:BIRY.0000029850.58543.82] [PMID: 15193126]
[101]
Leung, T.K.; Chen, C.H.; Tsai, S.Y.; Hsiao, G.; Lee, C.M. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility. Chin. J. Physiol., 2012, 55(5), 323-330.
[PMID: 23282206]
[102]
Busnardo, C.; Tavares, R.F.; Correa, F.M. Angiotensinergic neurotransmission in the paraventricular nucleus of the hypothalamus modulates the pressor response to acute restraint stress in rats. Neuroscience, 2014, 270, 12-19.
[http://dx.doi.org/10.1016/j.neuroscience.2014.03.064] [PMID: 24717718]
[103]
Ceccatelli, S.; Villar, M.J.; Goldstein, M.; Hökfelt, T. Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proc. Natl. Acad. Sci. USA, 1989, 86(23), 9569-9573.
[http://dx.doi.org/10.1073/pnas.86.23.9569] [PMID: 2512584]
[104]
Derin, N.; Yargiçoğlu, P.; Aslan, M.; Elmas, O.; Agar, A.; Aicigüzel, Y. The effect of sulfite and chronic restraint stress on brain lipid peroxidation and anti-oxidant enzyme activities. Toxicol. Ind. Health, 2006, 22(6), 233-240.
[http://dx.doi.org/10.1191/0748233706th264oa] [PMID: 16924954]
[105]
Pillai, R.; Uyehara-Lock, J.H.; Bellinger, F.P. Selenium and selenoprotein function in brain disorders. IUBMB Life, 2014, 66(4), 229-239.
[http://dx.doi.org/10.1002/iub.1262] [PMID: 24668686]
[106]
Shin, E.J.; Shin, S.W.; Nguyen, T.T.; Park, D.H.; Wie, M.B.; Jang, C.G.; Nah, S.Y.; Yang, B.W.; Ko, S.K.; Nabeshima, T.; Kim, H.C. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol. Neurobiol., 2014, 49(3), 1400-1421.
[http://dx.doi.org/10.1007/s12035-013-8617-1] [PMID: 24430743]
[107]
Carballo, M.; Conde, M.; El Bekay, R.; Martín-Nieto, J.; Camacho, M.J.; Monteseirín, J.; Conde, J.; Bedoya, F.J.; Sobrino, F. Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J. Biol. Chem., 1999, 274(25), 17580-17586.
[http://dx.doi.org/10.1074/jbc.274.25.17580] [PMID: 10364193]
[108]
Kuwahata, S.; Miyata, M.; Fujita, S.; Kubozono, T.; Shinsato, T.; Ikeda, Y.; Hamasaki, S.; Kuwaki, T.; Tei, C. Improvement of autonomic nervous activity by Waon therapy in patients with chronic heart failure. J. Cardiol., 2011, 57(1), 100-106.
[http://dx.doi.org/10.1016/j.jjcc.2010.08.005] [PMID: 20884178]
[109]
Oelze, M.; Kröller-Schön, S.; Steven, S.; Lubos, E.; Doppler, C.; Hausding, M.; Tobias, S.; Brochhausen, C.; Li, H.; Torzewski, M.; Wenzel, P.; Bachschmid, M.; Lackner, K.J.; Schulz, E.; Münzel, T.; Daiber, A. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension, 2014, 63(2), 390-396.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01602] [PMID: 24296279]
[110]
Ullrich, V.; Kissner, R. Redox signaling: bioinorganic chemistry at its best. J. Inorg. Biochem., 2006, 100(12), 2079-2086.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.09.019] [PMID: 17095095]
[111]
Leão, R.M.; Cruz, F.C.; Planeta, C.S. Exposure to acute restraint stress reinstates nicotine-induced place preference in rats. Behav. Pharmacol., 2009, 20(1), 109-113.
[http://dx.doi.org/10.1097/FBP.0b013e3283242f41] [PMID: 19179854]
[112]
Pacchioni, A.M.; Gioino, G.; Assis, A.; Cancela, L.M. A single exposure to restraint stress induces behavioral and neurochemical sensitization to stimulating effects of amphetamine: involvement of NMDA receptors. Ann. N. Y. Acad. Sci., 2002, 965, 233-246.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04165.x] [PMID: 12105099]
[113]
Deroche, V.; Piazza, P.V.; Casolini, P.; Maccari, S.; Le Moal, M.; Simon, H. Stress-induced sensitization to amphetamine and morphine psychomotor effects depend on stress-induced corticosterone secretion. Brain Res., 1992, 598(1-2), 343-348.
[http://dx.doi.org/10.1016/0006-8993(92)90205-N] [PMID: 1486498]
[114]
Quinton, M.S.; Yamamoto, B.K. Neurotoxic effects of chronic restraint stress in the striatum of methamphetamine-exposed rats. Psychopharmacology (Berl.), 2007, 193(3), 341-350.
[http://dx.doi.org/10.1007/s00213-007-0796-x] [PMID: 17458543]
[115]
Tata, D.A.; Yamamoto, B.K. Chronic stress enhances methamphetamine-induced extracellular glutamate and excitotoxicity in the rat striatum. Synapse, 2008, 62(5), 325-336.
[http://dx.doi.org/10.1002/syn.20497] [PMID: 18288648]
[116]
Ballester, J.; Valentine, G.; Sofuoglu, M. Pharmacological treatments for methamphetamine addiction: current status and future directions. Expert Rev. Clin. Pharmacol., 2017, 10(3), 305-314.
[PMID: 27927042]
[117]
Nordahl, T.E.; Salo, R.; Leamon, M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J. Neuropsychiatry Clin. Neurosci., 2003, 15(3), 317-325.
[http://dx.doi.org/10.1176/jnp.15.3.317] [PMID: 12928507]
[118]
Yui, K.; Ikemoto, S.; Goto, K.; Nishijima, K.; Yoshino, T.; Ishiguro, T. Spontaneous recurrence of methamphetamine-induced paranoid-hallucinatory states in female subjects: susceptibility to psychotic states and implications for relapse of schizophrenia. Pharmacopsychiatry, 2002, 35(2), 62-71.
[http://dx.doi.org/10.1055/s-2002-25067] [PMID: 11951147]
[119]
Yui, K.; Goto, K.; Ikemoto, S.; Ishiguro, T. Methamphetamine psychosis: spontaneous recurrence of paranoid-hallucinatory states and monoamine neurotransmitter function. J. Clin. Psychopharmacol., 1997, 17(1), 34-43.
[http://dx.doi.org/10.1097/00004714-199702000-00007] [PMID: 9004055]
[120]
Shin, E.J.; Nam, Y.; Lee, J.W.; Nguyen, P.T.; Yoo, J.E.; Tran, T.V.; Jeong, J.H.; Jang, C.G.; Oh, Y.J.; Youdim, M.B.H.; Lee, P.H.; Nabeshima, T.; Kim, H.C. N-Methyl, N-propynyl-2-phenylethylamine (MPPE), a selegiline analog, attenuates MPTP-induced dopaminergic toxicity with guaranteed behavioral safety: involvement of inhibitions of mitochondrial oxidative burdens and p53 gene-elicited pro-apoptotic change. Mol. Neurobiol., 2016, 53(9), 6251-6269.
[http://dx.doi.org/10.1007/s12035-015-9527-1] [PMID: 26563498]
[121]
Shin, E.J.; Bing, G.; Chae, J.S.; Kim, T.W.; Bach, J.H.; Park, D.H.; Yamada, K.; Nabeshima, T.; Kim, H.C. Role of microsomal epoxide hydrolase in methamphetamine-induced drug dependence in mice. J. Neurosci. Res., 2009, 87(16), 3679-3686.
[http://dx.doi.org/10.1002/jnr.22166] [PMID: 19598248]
[122]
Kim, H.C.; Jhoo, W.K.; Choi, D.Y.; Im, D.H.; Shin, E.J.; Suh, J.H.; Floyd, R.A.; Bing, G. Protection of methamphetamine nigrostriatal toxicity by dietary selenium. Brain Res., 1999, 851(1-2), 76-86.
[http://dx.doi.org/10.1016/S0006-8993(99)02122-8] [PMID: 10642830]
[123]
Mizoguchi, H.; Ibi, D.; Takase, F.; Nagai, T.; Kamei, H.; Toth, E.; Sato, J.; Takuma, K.; Yamada, K. Nicotine ameliorates impairment of working memory in methamphetamine-treated rats. Behav. Brain Res., 2011, 220(1), 159-163.
[http://dx.doi.org/10.1016/j.bbr.2011.01.036] [PMID: 21277906]
[124]
Futamura, T.; Akiyama, S.; Sugino, H.; Forbes, A.; McQuade, R.D.; Kikuchi, T. Aripiprazole attenuates established behavioral sensitization induced by methamphetamine. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(6), 1115-1119.
[http://dx.doi.org/10.1016/j.pnpbp.2010.06.006] [PMID: 20561555]
[125]
Kamei, H.; Nagai, T.; Nakano, H.; Togan, Y.; Takayanagi, M.; Takahashi, K.; Kobayashi, K.; Yoshida, S.; Maeda, K.; Takuma, K.; Nabeshima, T.; Yamada, K. Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol. Psychiatry, 2006, 59(1), 75-84.
[http://dx.doi.org/10.1016/j.biopsych.2005.06.006] [PMID: 16139811]
[126]
Abekawa, T.; Ito, K.; Nakagawa, S.; Nakato, Y.; Koyama, T. Effects of aripiprazole and haloperidol on progression to schizophrenia-like behavioural abnormalities and apoptosis in rodents. Schizophr. Res., 2011, 125(1), 77-87.
[http://dx.doi.org/10.1016/j.schres.2010.08.011] [PMID: 20833512]
[127]
Hsieh, J.H.; Stein, D.J.; Howells, F.M. The neurobiology of methamphetamine induced psychosis. Front. Hum. Neurosci., 2014, 8, 537.
[http://dx.doi.org/10.3389/fnhum.2014.00537] [PMID: 25100979]
[128]
Darke, S.; Kaye, S.; McKetin, R.; Duflou, J. Major physical and psychological harms of methamphetamine use. Drug Alcohol Rev., 2008, 27(3), 253-262.
[http://dx.doi.org/10.1080/09595230801923702] [PMID: 18368606]
[129]
Yui, K.; Ikemoto, S.; Ishiguro, T.; Goto, K. Studies of amphetamine or methamphetamine psychosis in Japan: relation of methamphetamine psychosis to schizophrenia. Ann. N. Y. Acad. Sci., 2000, 914, 1-12.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05178.x] [PMID: 11085303]
[130]
Sato, M.; Chen, C.C.; Akiyama, K.; Otsuki, S. Acute exacerbation of paranoid psychotic state after long-term abstinence in patients with previous methamphetamine psychosis. Biol. Psychiatry, 1983, 18(4), 429-440.
[PMID: 6860719]
[131]
Yui, K.; Goto, K.; Ikemoto, S.; Ishiguro, T.; Angrist, B.; Duncan, G.E.; Sheitman, B.B.; Lieberman, J.A.; Bracha, S.H.; Ali, S.F. Neurobiological basis of relapse prediction in stimulant-induced psychosis and schizophrenia: the role of sensitization. Mol. Psychiatry, 1999, 4(6), 512-523.
[http://dx.doi.org/10.1038/sj.mp.4000575] [PMID: 10578232]
[132]
Marchitti, S.A.; Deitrich, R.A.; Vasiliou, V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol. Rev., 2007, 59(2), 125-150.
[http://dx.doi.org/10.1124/pr.59.2.1] [PMID: 17379813]
[133]
Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2011, 15(7), 1957-1997.
[http://dx.doi.org/10.1089/ars.2010.3586] [PMID: 21087145]
[134]
Tran, T.V.; Shin, E.J.; Jeong, J.H.; Lee, J.W.; Lee, Y.; Jang, C.G.; Nah, S.Y.; Lei, X.G.; Toriumi, K.; Yamada, K.; Nabeshima, T.; Kim, H.C. Protective potential of the glutathione peroxidase-1 gene in abnormal behaviors induced by phencyclidine in mice. Mol. Neurobiol., 2017, 54(9), 7042-7062.
[http://dx.doi.org/10.1007/s12035-016-0239-y] [PMID: 27796745]
[135]
Kuribara, H. Dopamine D1 receptor antagonist SCH 23390 retards methamphetamine sensitization in both combined administration and early posttreatment schedules in mice. Pharmacol. Biochem. Behav., 1995, 52(4), 759-763.
[http://dx.doi.org/10.1016/0091-3057(95)00173-T] [PMID: 8587917]
[136]
Kuribara, H.; Uchihashi, Y. Effects of dopamine antagonism on methamphetamine sensitization: evaluation by ambulatory activity in mice. Pharmacol. Biochem. Behav., 1994, 47(1), 101-106.
[http://dx.doi.org/10.1016/0091-3057(94)90117-1] [PMID: 8115410]
[137]
Miyamoto, Y.; Iida, A.; Sato, K.; Muramatsu, S.; Nitta, A. Knockdown of dopamine D2 receptors in the nucleus accumbens core suppresses methamphetamine-induced behaviors and signal transduction in mice. Int. J. Neuropsychopharmacol., 2014, 18(4)pyu038
[http://dx.doi.org/10.1093/ijnp/pyu038] [PMID: 25522385]
[138]
Bosse, K.E.; Charlton, J.L.; Susick, L.L.; Newman, B.; Eagle, A.L.; Mathews, T.A.; Perrine, S.A.; Conti, A.C. Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8-deficient mice. J. Neurochem., 2015, 135(6), 1218-1231.
[http://dx.doi.org/10.1111/jnc.13235] [PMID: 26146906]
[139]
Park, S.W.; Shen, X.; Tien, L.T.; Roman, R.; Ma, T. Methamphetamine-induced changes in the striatal dopamine pathway in μ-opioid receptor knockout mice. J. Biomed. Sci., 2011, 18, 83.
[http://dx.doi.org/10.1186/1423-0127-18-83] [PMID: 22074218]
[140]
Brenner-Lavie, H.; Klein, E.; Zuk, R.; Gazawi, H.; Ljubuncic, P.; Ben-Shachar, D. Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complex I: relevance to dopamine pathology in schizophrenia. Biochim. Biophys. Acta, 2008, 1777(2), 173-185.
[http://dx.doi.org/10.1016/j.bbabio.2007.10.006] [PMID: 17996721]
[141]
Brookes, P.S.; Yoon, Y.; Robotham, J.L.; Anders, M.W.; Sheu, S.S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol., 2004, 287(4), C817-C833.
[http://dx.doi.org/10.1152/ajpcell.00139.2004] [PMID: 15355853]
[142]
Beauvais, G.; Atwell, K.; Jayanthi, S.; Ladenheim, B.; Cadet, J.L. Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS One, 2011, 6(12)e28946
[http://dx.doi.org/10.1371/journal.pone.0028946] [PMID: 22174933]
[143]
Chang, J.C.; Wu, S.L.; Hoel, F.; Cheng, Y.S.; Liu, K.H.; Hsieh, M.; Hoel, A.; Tronstad, K.J.; Yan, K.C.; Hsieh, C.L.; Lin, W.Y.; Kuo, S.J.; Su, S.L.; Liu, C.S. Far-infrared radiation protects viability in a cell model of Spinocerebellar Ataxia by preventing polyQ protein accumulation and improving mitochondrial function. Sci. Rep., 2016, 6, 30436.
[http://dx.doi.org/10.1038/srep30436] [PMID: 27469193]
[144]
Simon, S.L.; Domier, C.; Carnell, J.; Brethen, P.; Rawson, R.; Ling, W. Cognitive impairment in individuals currently using methamphetamine. Am. J. Addict., 2000, 9(3), 222-231.
[http://dx.doi.org/10.1080/10550490050148053] [PMID: 11000918]
[145]
Paulus, M.P.; Hozack, N.E.; Zauscher, B.E.; Frank, L.; Brown, G.G.; Braff, D.L.; Schuckit, M.A. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology, 2002, 26(1), 53-63.
[http://dx.doi.org/10.1016/S0893-133X(01)00334-7] [PMID: 11751032]
[146]
Sekine, Y.; Iyo, M.; Ouchi, Y.; Matsunaga, T.; Tsukada, H.; Okada, H.; Yoshikawa, E.; Futatsubashi, M.; Takei, N.; Mori, N. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am. J. Psychiatry, 2001, 158(8), 1206-1214.
[http://dx.doi.org/10.1176/appi.ajp.158.8.1206] [PMID: 11481152]
[147]
Cheng, W.H.; Ho, Y.S.; Ross, D.A.; Valentine, B.A.; Combs, G.F.; Lei, X.G. Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J. Nutr., 1997, 127(8), 1445-1450.
[http://dx.doi.org/10.1093/jn/127.8.1445] [PMID: 9237936]
[148]
Tran, T.V.; Shin, E.J.; Nguyen, L.T.T.; Lee, Y.; Kim, D.J.; Jeong, J.H.; Jang, C.G.; Nah, S.Y.; Toriumi, K.; Nabeshima, T.; Yamada, K.; Kim, H.C. Protein kinase Cdelta gene depletion protects against methamphetamine-induced impairments in recognition memory and ERK1/2 signaling via upregulation of glutathione peroxidase-1 gene. Mol. Neurobiol., 2018, 55(5), 4136-4159.
[PMID: 28597397]
[149]
Scott, J.C.; Woods, S.P.; Matt, G.E.; Meyer, R.A.; Heaton, R.K.; Atkinson, J.H.; Grant, I. Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol. Rev., 2007, 17(3), 275-297.
[http://dx.doi.org/10.1007/s11065-007-9031-0] [PMID: 17694436]
[150]
Talman, V.; Pascale, A.; Jäntti, M.; Amadio, M.; Tuominen, R.K. Protein kinase C activation as a potential therapeutic strategy in Alzheimer’s disease: is there a role for embryonic lethal abnormal vision-like proteins? Basic Clin. Pharmacol. Toxicol., 2016, 119(2), 149-160.
[http://dx.doi.org/10.1111/bcpt.12581] [PMID: 27001133]
[151]
Newton, A.C. Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem. Rev., 2001, 101(8), 2353-2364.
[http://dx.doi.org/10.1021/cr0002801] [PMID: 11749377]
[152]
Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 1988, 334(6184), 661-665.
[http://dx.doi.org/10.1038/334661a0] [PMID: 3045562]
[153]
Shin, E.J.; Duong, C.X.; Nguyen, X.T.; Bing, G.; Bach, J.H.; Park, D.H.; Nakayama, K.; Ali, S.F.; Kanthasamy, A.G.; Cadet, J.L.; Nabeshima, T.; Kim, H.C. PKCδ inhibition enhances tyrosine hydroxylase phosphorylation in mice after methamphetamine treatment. Neurochem. Int., 2011, 59(1), 39-50.
[http://dx.doi.org/10.1016/j.neuint.2011.03.022] [PMID: 21672585]
[154]
Iwase, K.; Miyanaka, K.; Shimizu, A.; Nagasaki, A.; Gotoh, T.; Mori, M.; Takiguchi, M. Induction of endothelial nitric-oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment. J. Biol. Chem., 2000, 275(16), 11929-11933.
[http://dx.doi.org/10.1074/jbc.275.16.11929] [PMID: 10766821]
[155]
Monti, M.; Donnini, S.; Giachetti, A.; Mochly-Rosen, D.; Ziche, M. deltaPKC inhibition or varepsilonPKC activation repairs endothelial vascular dysfunction by regulating eNOS post-translational modification. J. Mol. Cell. Cardiol., 2010, 48(4), 746-756.
[http://dx.doi.org/10.1016/j.yjmcc.2009.11.002] [PMID: 19913548]
[156]
Ghigo, D.; Geromin, D.; Franchino, C.; Todde, R.; Priotto, C.; Costamagna, C.; Arese, M.; Garbarino, G.; Pescarmona, G.P.; Bosia, A. Correlation between nitric oxide synthase activity and reduced glutathione level in human and murine endothelial cells. Amino Acids, 1996, 10(3), 277-281.
[http://dx.doi.org/10.1007/BF00807330] [PMID: 24178542]
[157]
Hofmann, H.; Schmidt, H.H. Thiol dependence of nitric oxide synthase. Biochemistry, 1995, 34(41), 13443-13452.
[http://dx.doi.org/10.1021/bi00041a023] [PMID: 7577932]
[158]
Yang, X.; Wang, Y.; Li, Q.; Zhong, Y.; Chen, L.; Du, Y.; He, J.; Liao, L.; Xiong, K.; Yi, C.X.; Yan, J. The Main Molecular Mechanisms Underlying Methamphetamine- Induced Neurotoxicity and Implications for Pharmacological Treatment. Front. Mol. Neurosci., 2018, 11, 186.
[http://dx.doi.org/10.3389/fnmol.2018.00186] [PMID: 29915529]
[159]
Krasnova, I.N.; Cadet, J.L. Methamphetamine toxicity and messengers of death. Brain Res. Brain Res. Rev., 2009, 60(2), 379-407.
[http://dx.doi.org/10.1016/j.brainresrev.2009.03.002] [PMID: 19328213]
[160]
Jayanthi, S.; McCoy, M.T.; Beauvais, G.; Ladenheim, B.; Gilmore, K.; Wood, W., III; Becker, K.; Cadet, J.L. Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum. PLoS One, 2009, 4(6)e6092
[http://dx.doi.org/10.1371/journal.pone.0006092] [PMID: 19564919]
[161]
Nathan, P.J.; Watson, J.; Lund, J.; Davies, C.H.; Peters, G.; Dodds, C.M.; Swirski, B.; Lawrence, P.; Bentley, G.D.; O’Neill, B.V.; Robertson, J.; Watson, S.; Jones, G.A.; Maruff, P.; Croft, R.J.; Laruelle, M.; Bullmore, E.T. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int. J. Neuropsychopharmacol., 2013, 16(4), 721-731.
[http://dx.doi.org/10.1017/S1461145712000752] [PMID: 22932339]
[162]
Kim, B.K.; Tran, H.Y.; Shin, E.J.; Lee, C.; Chung, Y.H.; Jeong, J.H.; Bach, J.H.; Kim, W.K.; Park, D.H.; Saito, K.; Nabeshima, T.; Kim, H.C. IL-6 attenuates trimethyltin-induced cognitive dysfunction via activation of JAK2/STAT3, M1 mAChR and ERK signaling network. Cell. Signal., 2013, 25(6), 1348-1360.
[http://dx.doi.org/10.1016/j.cellsig.2013.02.017] [PMID: 23499905]
[163]
Park, S.J.; Shin, E.J.; Min, S.S.; An, J.; Li, Z.; Hee Chung, Y.; Hoon Jeong, J.; Bach, J.H.; Nah, S.Y.; Kim, W.K.; Jang, C.G.; Kim, Y.S.; Nabeshima, Y.; Nabeshima, T.; Kim, H.C. Inactivation of JAK2/STAT3 signaling axis and downregulation of M1 mAChR cause cognitive impairment in klotho mutant mice, a genetic model of aging. Neuropsychopharmacology, 2013, 38(8), 1426-1437.
[http://dx.doi.org/10.1038/npp.2013.39] [PMID: 23389690]
[164]
Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev., 2001, 22(2), 153-183.
[PMID: 11294822]
[165]
English, J.D.; Sweatt, J.D. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem., 1996, 271(40), 24329-24332.
[http://dx.doi.org/10.1074/jbc.271.40.24329] [PMID: 8798683]
[166]
Valjent, E.; Caboche, J.; Vanhoutte, P. Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol. Neurobiol., 2001, 23(2-3), 83-99.
[http://dx.doi.org/10.1385/MN:23:2-3:083] [PMID: 11817219]
[167]
Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci., 2001, 2(2), 119-128.
[http://dx.doi.org/10.1038/35053570] [PMID: 11252991]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 10
Year: 2019
Page: [990 - 1002]
Pages: 13
DOI: 10.2174/1570159X17666190228114318
Price: $58

Article Metrics

PDF: 12
HTML: 2