Calpain-1 and Calpain-2 in the Brain: Dr. Jekill and Mr Hyde?

Author(s): Michel Baudry*.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 9 , 2019

Become EABM
Become Reviewer


While the calpain system has now been discovered for over 50 years, there is still a paucity of information regarding the organization and functions of the signaling pathways regulated by these proteases, although calpains play critical roles in many cell functions. Moreover, calpain overactivation has been shown to be involved in numerous diseases. Among the 15 calpain isoforms identified, calpain-1 (aka µ-calpain) and calpain-2 (aka m-calpain) are ubiquitously distributed in most tissues and organs, including the brain. We have recently proposed that calpain-1 and calpain2 play opposite functions in the brain, with calpain-1 activation being required for triggering synaptic plasticity and neuroprotection (Dr. Jekill), and calpain-2 limiting the extent of plasticity and being neurodegenerative (Mr. Hyde). Calpain-mediated cleavage has been observed in cytoskeleton proteins, membrane-associated proteins, receptors/channels, scaffolding/anchoring proteins, and protein kinases and phosphatases. This review will focus on the signaling pathways related to local protein synthesis, cytoskeleton regulation and neuronal survival/death regulated by calpain-1 and calpain-2, in an attempt to explain the origin of the opposite functions of these 2 calpain isoforms. This will be followed by a discussion of the potential therapeutic applications of selective regulators of these 2 calpain isoforms.

Keywords: Calpain, signaling pathways, synaptic plasticity, learning, neurodegeneration, neuroprotection.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [823 - 829]
Pages: 7
DOI: 10.2174/1570159X17666190228112451
Price: $95

Article Metrics

PDF: 6