Hypolipidemic and Antioxidant Activities of Corrigiola telephiifolia in Diabetic Rats

Author(s): Morad Hebi, Mohamed Eddouks*.

Journal Name: Cardiovascular & Hematological Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Cardiovascular & Hematological Agents)

Volume 17 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: The evaluation of the hypolipidemic and antioxidant activities of the aerial parts aqueous extract of Corrigiola telephiifolia (APAE of C. telephiifolia) in normal and streptozotocin (STZ)-induced diabetic rats.

Methods: The effects of oral administration of APAE of C. telephiifolia (5 mg/kg) on the lipid profile as well as the in vitro antioxidant activity of this aqueous extract have been determined.

Results: APAE of C. telephiifolia (5 mg/kg) reduced significantly (p<0.001) the plasma total cholesterol levels in diabetic rats. In contrast, no significant increase in plasma triglyceride levels in normal and in STZ-induced diabetic rats was observed. On the other hand, APAE of C. telephiifolia showed an antioxidant activity.

Conclusion: The APAE of C. telephiifolia exhibits an antioxidant, cholesterol and body weightlowering activities in diabetic rats.

Keywords: Antioxidant activities, Corrigiola telephiifolia, flavonoids, streptozotocin, total cholesterol, triglycerides.

[1]
Ibrahim, S.R.; Mohamed, G.A.; Banjar, Z.M.; Kamal, H.K. Natural antihyperlipidemic agents: Current status and future perspectives. Phytopharmacology, 2013, 4, 492-531.
[2]
Cao, G.; Sofic, E.; Prior, R.L. Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem., 1996, 44(11), 3426-3431.
[3]
Chan, K.C.; Yang, M.Y.; Lin, M.C.; Lee, Y.J.; Chang, W.C.; Wang, C.J. Mulberry leaf extract inhibits the development of atherosclerosis in cholesterol-fed rabbits and in cultured aortic vascular smooth muscle cells. J. Agric. Food Chem., 2013, 61(11), 2780-2788.
[4]
Choudhary, M.I.; Naheed, S.; Jalil, S.; Alam, J.M. Effects of ethanolic extract of Iris germanica on lipid profile of rats fed on a high-fat diet. J. Ethnopharmacol., 2005, 98(1), 217-220.
[5]
Kabbaj, F.; Meddah, B.; Cherrah, Y.; Faouzi, E. Ethnopharmacological profile of traditional plants used in Morocco by cancer patients as herbal therapeutics. Phytopharmacology, 2012, 2(2), 243-256.
[6]
Al Faız, C.; Alami, I.T.; Saıdi, N. Domestication of some MAP species. Biological diversity, cultural and economic value of medicinal, herbal and aromatic plants in Morocco. Annual Report, 2006, 15-22.
[7]
Lakmichi, H.; Bakhtaoui, F.Z.; Gadhi, C.A.; Ezoubeiri, A.; El Jahiri, Y.; El Mansouri, A.; Loutfi, K. Toxicity profile of the aqueous ethanol root extract of Corrigiolatelephii foliapourr. (Caryophyllaceae) in rodents. J. Evid. Based Complementary Altern. Med., 2011. 2011
[8]
Bellakhdar, J. La pharmacopée marocaine traditionnelle., 1997.
[9]
Bellakhdar, J. Médecine traditionnelle et toxicologie ouestsahariennes: Contribution à l'étude de la pharmacopée marocaine. Editions techniques nord-africaines 1978.
[10]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J. Ethnopharmacol., 2017, 198, 516-530.
[11]
Benkhnigue, O.; Ben Akka, F.; Salhi, S.; Fadli, M.; Douira, A.; Zidane, L. Catalogue des plantes médicinales utilisées dans le traitement du diabète dans la région d’Al Haouz-Rhamna (Maroc). J. Anim. Plant Sci., 2014, 23, 3539-3568.
[12]
Hebi, M.; Eddouks, M. Glucose lowering activity of anvillea radiata coss & durieu in diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2018, 18(1), 71-80.
[13]
Hebi, M.; Farid, O.; Ajebli, M.; Eddouks, M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata Vahl. in normal and streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2017, 87, 230-239.
[14]
Hebi, M.; Eddouk, M. Study of hypolipidemic and antioxidant activities of Anvillea radiata Coss & Durieu in diabetic rats. Immunol. Endocr. Metab. Agents Med. Chem., 2017, 17(2), 140-148.
[15]
Hebi, M.; Eddouks, M. Evaluation of the antioxidant activity of Stevia rebaudiana. Phytotherapie, 2016, 14(1), 17-22.
[16]
Oumar, Y.S.; Nathalie, G.K.; Souleymane, M.; Karamoko, O.; Alexis, B.G.; David, G.J. In vitro antioxidant activity of extracts of the root Cochlospermumplanchonii Hook. f. ex. Planch (Cochlospermaceae). J. Pharmacog. Phytochemist., 2014, 3(4), 164-170.
[17]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181(4617), 1199-1200.
[18]
Hebi, M.; Eddouks, M. Antidiabetic effect of aqueous Corrigiola telephiifolia in streptozotocin-induced diabetic rats. Nat. Prod. J., 2018.
[http://dx.doi.org/10.2174/2210315509666181231162513]
[19]
Hebi, M.; Khallouki, F.; Haidani, A.; Eddouks, M. Aqueous extract of Argania spinosa L. fruits ameliorates diabetes in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2018, 16(1), 56-65.
[20]
Hebi, M.; Eddouks, M. Study of hypolipidemic and antioxidant activities of Anvillea radiata Coss & Durieu in diabetic rats. Immunol. Endocr. Metab. Agents Med. Chem., 2017, 17(2), 140-148.
[21]
Kandouli, C.; Cassien, M.; Mercier, A.; Delehedde, C.; Ricquebourg, E.; Stocker, P.; Culcasi, M. Antidiabetic, antioxidant and anti inflammatory properties of water and n-butanol soluble extracts from Saharian Anvillearadiata in high-fat-diet fed mice. J. Ethnopharmacol., 2017, 207, 251-267.
[22]
Insull, W. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: A scientific review. South. Med. J., 2006, 99(3), 257-274.
[23]
Vasudevan, D.M.; Sreekumari, S.; Vaidyanathan, K. Textbook of Biochemistry for Medical Students; JP Medical Ltd., 2013.
[24]
Sathishsekar, D.; Subramanian, S. Antioxidant properties of Momordica charantia (bitter gourd) seeds on Streptozotocin induced diabetic rats. Asia Pac. J. Clin. Nutr., 2005, 14(2), 153.
[25]
Daisy, P.; Feril, G.; Kani, J. Evaluation of antidiabetic activity of various extracts of Cassia auriculata Linn. bark on streptozotocin-induced diabetic wistar rats. Int. J. Pharm. Pharm. Sci., 2012, 4(Suppl. 4), 312-318.
[26]
Bonnefont-Rousselot, D.; Bastard, J.P.; Jaudon, M.C.; Delattre, J. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabete Metab., 2000, 26(3), 163-177.
[27]
Koshy, A.S.; Anila, L.; Vijayalakshmi, N.R. Flavonoids from Garcinia cambogialower lipid levels in hypercholesterolemic rats. Food Chem., 2001, 7(3), 289-294.
[28]
Jung, U.J.; Lee, M.K.; Park, Y.B.; Kang, M.A.; Choi, M.S. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int. J. Biochem. Cell Biol., 2006, 38(7), 1134-1145.
[29]
Bursill, C.; Roach, P.D.; Bottema, C.D.; Pal, S. Green tea upregulates the low-density lipoprotein receptor through the sterol-regulated element binding protein in HepG2 liver cells. J. Agric. Food Chem., 2001, 49(11), 5639-5645.
[30]
Yang, T.T.; Koo, M.W. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci., 1999, 66(5), 411-423.
[31]
Dhulasavant, V.; Shinde, S.; Pawar, M.; Naikwade, N.S. Antihyperlipidemic activity of Cinnamomum tamala Nees. on high cholesterol diet induced hyperlipidemia. Int. J. Pharm. Tech. Res., 2010, 2(4), 2517-2521.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2019
Page: [47 - 51]
Pages: 5
DOI: 10.2174/1871525717666190227231834

Article Metrics

PDF: 36
HTML: 3
EPUB: 2
PRC: 2