Development and Evaluation of Particulate Microcarriers of Adapalene as a Topical Delivery System

Author(s): Divya D. Jain , Namita D. Desai* .

Journal Name: Drug Delivery Letters

Volume 9 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Adapalene is a promising third generation retinoid used in the topical treatment of acne vulgaris. However, the major drawback associated with conventional topical therapy of Adapalene is the ‘retinoid reaction’ which is dose-dependent and characterized by erythema, scaling and burning sensation at the application sites. Microparticulate drug delivery can play a major role in reducing side effects and providing better patient compliance due to targeted delivery.

Methods: Adapalene microparticles were prepared using quasi emulsion solvent diffusion method. The effects of formulation variables including polymer ratios, amounts of emulsifier, drug loading and process variables such as stirring time and speed on the physical characteristics of microparticles were investigated. The developed microparticles were characterized by DSC and SEM. Adapalene microparticles were incorporated into Carbopol 971 NF gel for ease of topical delivery.

Results: Adapalene microparticulate topical gel showed sustained drug release over 8 hours in in vitro studies. The amount of drug retained in the rat skin during ex vivo studies was higher in the microparticulate topical gel (227.43 ± 0.83 µg/cm2) as compared to the marketed formulation (81.4 ± 1.11 µg/cm2) after 8 hours indicating localized and sustained drug action that can be useful in treating acne vulgaris. The safety of optimized Adapalene gel determined by skin irritation studies performed on Sprague Dawley rats showed no irritation potential.

Conclusion: Microparticles can provide promising carrier systems to deliver Adapalene, improving patient compliance due to enhanced skin deposition, localized and sustained action with reduced associated irritant effects.

Keywords: Adapalene, microparticles, topical drug delivery system, controlled release, Carbopol 971 NF gel, acne vulgaris.

[1]
Mahmood, N.; Shipman, A. The age-old problem of acne. Int. J. Womens Dermatol., 2017, 3(2), 71-76.
[2]
Nguyen, R.; Su, J. Treatment of acne vulgaris. Paediatr. Child and Health, 2011, 21(3), 119-125.
[3]
Tan, J.K.; Bhate, K. A global perspective on the epidemiology of acne. Br. J. Dermatol., 2015, 172, 3-12.
[4]
Guo, C.; Khengar, R.H.; Sun, M.; Wang, Z.; Fan, A.; Zhao, Y. Acid-responsive polymeric nanocarriers for topical adapalene delivery. Pharm. Res., 2014, 31(11), 3051-3059.
[5]
Jain, A.K.; Jain, A.; Garg, N.K.; Agarwal, A.; Jain, A.; Jain, S.A.; Tyagi, R.K.; Jain, R.K.; Agrawal, H.; Agrawal, G.P. Adapalene loaded solid lipid nanoparticles gel: An effective approach for acne treatment. Colloids Surf. B Biointerfaces, 2014, 121, 222-229.
[6]
Lauterbach, A.; Mueller-Goymann, C.C. Development, formulation, and characterization of an adapalene-loaded solid lipid microparticle dispersion for follicular penetration. Int. J. Pharm., 2014, 466(1), 122-132.
[7]
Date, A.; Naik, B.; Nagarsenker, M. Novel drug delivery systems: Potential in improving topical delivery of anti-acne agents. Skin Pharmacol. Physiol., 2006, 19(1), 2-16.
[8]
Czernielewski, J.; Michel, S.; Bouclier, M.; Baker, M.; Hensby, C. Adapalene biochemistry and the evolution of a new topical retinoid for treatment of acne. J. Eur. Acad. Dermatol. Venereol., 2001, 15(s3), 5-12.
[9]
Ramezanli, T.; Zhang, Z.; Michniak-Kohn, B.B. Development and characterization of polymeric nanoparticle-based formulation of adapalene for topical acne therapy. Nanomed. Nanotechnol. Biol. Med., 2017, 13(1), 143-152.
[10]
Bhalekar, M.; Upadhaya, P.; Madgulkar, A. Formulation and evaluation of Adapalene- loaded nanoparticulates for epidermal localization. Drug Deliv. Transl. Res., 2015, 5(6), 585-595.
[11]
Harde, H.; Agrawal, A.K.; Katariya, M.; Kale, D.; Jain, S. Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability. RSC Advances, 2015, 5(55), 43917-43929.
[12]
Chiang, C.H.; Hosseinkhani, H.; Cheng, W.S.; Chen, C.W.; Wang, C.H.; Lo, Y.L. Improving drug loading efficiency and delivery performance of micro-and nanoparticle preparations through optimising formulation variables. Int. J. Nanotechnol., 2013, 10(10-11), 996-1006.
[13]
Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M.A.; Atyabi, F.; Hosseinkhani, H. Silk fibroin nanoparticle as a novel drug delivery system. J. Control. Release, 2015, 206, 161-176.
[14]
Abedini, F.; Ebrahimi, M.; Roozbehani, A.H.; Domb, A.J.; Hosseinkhani, H. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym. Adv. Technol., 2018, 29(10), 2564-2573.
[15]
Kumar, V.; Banga, A.K. Intradermal and follicular delivery of adapalene liposomes. Drug Dev. Ind. Pharm., 2016, 42(6), 871-879.
[16]
Hong, X.; Wu, Z.; Chen, L.; Wu, F.; Wei, L.; Yuan, W. Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett., 2014, 6(3), 91-199.
[17]
Hong, X.; Wei, L.; Wu, F.; Wu, Z.; Chen, L.; Liu, Z.; Yuan, W. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Devel. Ther., 2013, 7, 945.
[18]
Escobar‐Chávez, J.J.; Bonilla‐Martínez, D.; Angélica, M.; Molina‐Trinidad, E.; Casas‐Alancaster, N.; Revilla‐Vázquez, A.L. Microneedles: A valuable physical enhancer to increase transdermal drug delivery. J. Clin. Pharmacol., 2011, 51(7), 964-977.
[19]
Vyas, A.; Sonker, A.K.; Gidwani, B. Carrier-based drug delivery system for treatment of acne. Scientific World Journal, 2014, 2014, 276260.
[20]
Alagusundaram, M.; Madhu Sudana Chetty, C.; Umashankari, K.; Badarinath, A.; Lavanya, C.; Ramkanth, S. Microspheres as a novel drug delivery sysytem - A review. Int. J. Chemtech Res., 2009, 1(3), 526-534.
[21]
Freiberg, S.; Zhu, X. Polymer microspheres for controlled drug release. Int. J. Pharm., 2004, 282(1), 1-18.
[22]
Patel, N.; Padia, N.; Vadgama, N.; Raval, M.; Sheth, N. Formulation and evaluation of microsponge gel for topical delivery of fluconazole for fungal therapy. J. Pharm. Investig., 2016, 46(3), 221-238.
[23]
Parida, P.; Mishra, S.C.; Sahoo, S.; Behera, A.; Nayak, B.P. Development and characterization of ethylcellulose based microsphere for sustained release of nifedipine. J. Pharm. Anal., 2016, 6(5), 341-344.
[24]
Mishra, U.; Murthy, P.; Gourishyam, P.; Sanjay, K. Formulation development and standardisation of herbal gel containing methanolic extract of Butea Frondosa. Int. Res. J. Pharm., 2011, 2(11), 126-129.
[25]
Bachhav, Y.G.; Patravale, V.B. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation. Int. J. Pharm., 2009, 365(1), 175-179.
[26]
Khullar, R.; Kumar, D.; Seth, N.; Saini, S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharm. J., 2012, 20(1), 63-67.
[27]
More, B.; Sakharwade, S.; Tembhurne, S.; Sakarkar, D. Evaluation for skin irritancy testing of developed formulations containing extract of Butea monosperma for its topical application. Int. J. Toxicol. Appl. Pharmacol., 2013, 3(1), 10-13.
[28]
Patra, C.N.; Priya, R.; Swain, S.; Jena, G.K.; Panigrahi, K.C.; Ghose, D. Pharmaceutical significance of Eudragit: A review. Future J. Pharm. Sci., 2017.
[29]
Jelvehgari, M.; Siahi-Shadbad, M.; Azarmi, S.; Martin, G.P.; Nokhodchi, A. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies. Int. J. Pharm., 2006, 308(1), 124-132.
[30]
Arya, P.; Pathak, K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: Optimization and pharmacokinetics. Int. J. Pharm., 2014, 460(1), 1-12.
[31]
Abdelmalak, N.; El-Menshawe, S. A new topical fluconazole microsponge loaded hydrogel: Preparation and characterization. Int. J. Pharm. Pharm. Sci., 2012, 4(1), 460-469.
[32]
Orlu, M.; Cevher, E.; Araman, A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int. J. Pharm., 2006, 318(1), 103-117.
[33]
Crotts, G.; Park, T.G. Preparation of porous and nonporous biodegradable polymeric hollow microspheres. J. Control. Release, 1995, 35(2-3), 91-105.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 3
Year: 2019
Page: [222 - 233]
Pages: 12
DOI: 10.2174/2210303109666190227163606
Price: $58

Article Metrics

PDF: 18
HTML: 5
EPUB: 1
PRC: 1