Investigation of Potential Paraoxonase-I Inhibitors by Kinetic and Molecular Docking Studies: Chemotherapeutic Drugs

Author(s): Cüneyt Türkeş*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Metabolic processes in living organisms are closely related to the catalytic activity of enzymes. Changes in enzyme activity cause various diseases e.g., neurological, cancer, metabolic and cardiovascular. Most of the current therapeutic drugs available in clinical utilization function as enzyme inhibitors.

Objective: The main goal of the current study to contribute to this growing drug design area (such as medication discovery and development) by investigating protein-drug interactions.

Methods: The paraoxonase-I (PON1) enzyme was purified from human serum by using different and simple chromatographic techniques. Additionally, it was investigated inhibition effects of some chemotherapeutic drugs on the PON1.

Results: The purification results for PON1 depicted a 3880.83 EU/mg proteins specific activity and the molecular weight was calculated as 43 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These drugs found to strongly inhibit PON1, with IC50 values ranging from 0.222±0.002 to 688.300±0.897 µM. Ki constants for vincristine sulfate, epirubicin hydrochloride, and doxorubicin hydrochloride were determined to be 0.235±0.032 µM, 221.400±29.270 µM, and 913.300±201.000 µM, respectively.

Conclusion: These drugs showed in competitive inhibition. Also, the molecular docking poses of these agents inside the catalytic sites of 1V04 and 3SRE were analysis.

Keywords: Paraoxonase, HDL, chromatography, inhibition, molecular docking, chemotherapeutic drug, protein-drug interactions.

[1]
Costa, L.; Li, W.; Richter, R.; Shih, D.; Lusis, A.; Furlong, C. The role of paraoxonase (PON1) in the detoxication of organophosphates and its human polymorphism. Chem. Biol. Interact., 1999, 119, 429-438.
[2]
Aviram, M.; Rosenblat, M.; Bisgaier, C.L.; Newton, R.S.; Primo-Parmo, S.L.; La Du, B.N. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest., 1998, 101(8), 1581-1590.
[3]
Durrington, P.; Mackness, B.; Mackness, M. Paraoxonase and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2001, 21(4), 473-480.
[4]
Mackness, M.I.; Arrol, S.; Abbott, C.A.; Durrington, P.N. Is paraoxonase related to atherosclerosis. Chem. Biol. Interact., 1993, 87(1-3), 161-171.
[5]
Watson, A.D.; Berliner, J.A.; Hama, S.Y.; La Du, B.N.; Faull, K.F.; Fogelman, A.M.; Navab, M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J. Clin. Invest., 1995, 96(6), 2882-2891.
[6]
Primo-Parmo, S.L.; Sorenson, R.C.; Teiber, J.; La Du, B.N. The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics, 1996, 33(3), 498-507.
[7]
Mazur, A. An enzyme in animal tissues capable of hydrolyzing the phosphorus-fluorine bond of alkyl fluorophosphates. J. Biol. Chem., 1946, 164(1), 271-289.
[8]
Gaidukov, L.; Rosenblat, M.; Aviram, M.; Tawfik, D.S. The 192R/Q polymorphs of serum paraoxonase PON1 differ in HDL binding, lipolactonase stimulation, and cholesterol efflux. J. Lipid Res., 2006, 47(11), 2492-2502.
[9]
Silverman, J.A.; Deitcher, S.R. Marqibo®(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol., 2013, 71(3), 555-564.
[10]
Zhang, P.; Ling, G.; Sun, J.; Zhang, T.; Yuan, Y.; Sun, Y.; Wang, Z.; He, Z. Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials, 2011, 32(23), 5524-5533.
[11]
Chen, Z.; Pierre, D.; He, H.; Tan, S.; Pham-Huy, C.; Hong, H.; Huang, J. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int. J. Pharm., 2011, 405(1-2), 153-161.
[12]
Zhang, H-Z.; Gao, F-P.; Liu, L-R.; Li, X-M.; Zhou, Z-M.; Zhang, Q-Q. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy. Colloids Surf. B Biointerfaces, 2009, 71(1), 19-26.
[13]
Bovelli, D.; Plataniotis, G.; Roila, F.; Group, E.G.W. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO Clinical Practice Guidelines. Ann. Oncol., 2010, 21(5), v277-v282.
[14]
Chistiakov, D.A.; Melnichenko, A.A.; Orekhov, A.N.; Bobryshev, Y.V. Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie, 2017, 132, 19-27.
[15]
Copeland, R.A.; Harpel, M.R.; Tummino, P.J. Targeting enzyme inhibitors in drug discovery. Expert Opin. Ther. Targets, 2007, 11(7), 967-978.
[16]
Renault, F.; Chabrière, E.; Andrieu, J.P.; Dublet, B.; Masson, P.; Rochu, D. Tandem purification of two HDL-associated partner proteins in human plasma, paraoxonase (PON1) and phosphate binding protein (HPBP) using hydroxyapatite chromatography. J. Chromatogr. B., 2006, 836(1-2), 15-21.
[17]
Furlong, C. Paraoxonases: An historical perspective. In: The paraoxonases: Their role in disease development and xenobiotic metabolism; Springer: Berlin, 2008; pp. 3-31.
[18]
Mackness, M.I.; Durrington, P.N. HDL, its enzymes and its potential to influence lipid peroxidation. Atherosclerosis, 1995, 115(2), 243-253.
[19]
Türkeş, C.; Söyüt, H.; Beydemir, Ş. Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress. Pharm. Rep., 2014, 66(1), 74-80.
[20]
Sinan, S.; Koçkar, F.; Arslan, O. Novel purification strategy for human PON1 and inhibition of the activity by cephalosporin and aminoglikozide derived antibiotics. Biochimie, 2006, 88(5), 565-574.
[21]
Türkeş, C.; Söyüt, H.; Beydemir, Ş. In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on purified paraoxonase-I (hPON1) from human serum. Environ. Toxicol. Pharmacol., 2016, 42, 252-257.
[22]
Beydemir, Ş.; Demir, Y. Antiepileptic drugs: Impacts on human serum paraoxonase‐1. J. Biochem. Mol. Toxicol., 2017, 31(6)e21889
[23]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[24]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680.
[25]
Türkeş, C.; Söyüt, H.; Beydemir, Ş. Human serum paraoxonase-1 (hPON1): In vitro inhibition effects of moxifloxacin hydrochloride, levofloxacin hemihydrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 622-628.
[26]
Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 1934, 56(3), 658-666.
[27]
Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 2010, 24(6-7), 591-604.
[28]
Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M.J. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691.
[29]
Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comp., 2015, 12(1), 281-296.
[30]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W.J. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[31]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[32]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[33]
Van Den Driessche, G.; Fourches, D.J. Adverse drug reactions triggered by the common HLA-B* 57: 01 variant: a molecular docking study. J. Cheminform., 2017, 9(1), 13.
[34]
Nebbia, C. Biotransformation enzymes as determinants of xenobiotic toxicity in domestic animals. Vet. J., 2001, 161(3), 238-252.
[35]
Coban, T.A.; Beydemir, S.; Guelcin, I.; Ekinci, D. The effect of ethanol on erythrocyte carbonic anhydrase isoenzymes activity: An in vitro and in vivo study. J. Enzyme Inhib. Med. Chem., 2008, 23(2), 266-270.
[36]
Özaslan, M.S.; Demir, Y.; Aslan, H.E.; Beydemir, Ş.; Küfrevioğlu, Ö.İ. Evaluation of chalcones as inhibitors of glutathione S‐transferase. J. Biochem. Mol. Toxicol., 2018.e22047
[37]
Cebeci, B.; Alım, Z.; Beydemir, Ş. In vitro effects of pesticide exposure on the activity of the paraoxonase-1 enzyme from sheep liver microsomes. Turk. J. Chem., 2014, 38(3), 512-520.
[38]
Ozabacigil, F.; Beydemir, S.; Ciftci, M.; Gumustekin, K.; Bakan, N. Cisplatin and 5-fluorouracil inhibits 6-phosphogluconate dehydrogenase activity in human erythrocytes in vitro and in vivo. Asian J. Chem., 2008, 20(4), 3189.
[39]
Köksal, Z.; Alım, Z.; Beydemir, Ş.; Özdemir, H. Potent inhibitory effects of some phenolic acids on lactoperoxidase. J. Biochem. Mol. Toxicol., 2016, 30(11), 533-538.
[40]
Şengül, B.; Beydemir, Ş. The interactions of cephalosporins on polyol pathway enzymes from sheep kidney. Arch. Physiol. Biochem., 2018, 124(1), 35-44.
[41]
Ciftci, M.; Beydemir, S.; Ekinci, D. Effects of some drugs on enzymatic activity of glucose 6-phosphate dehydrogenase from chicken erythrocytes in vitro. Asian J. Chem., 2008, 20(3), 2189.
[42]
Akbaba, Y.; Türkeş, C.; Polat, L.; Söyüt, H.; Şahin, E.; Menzek, A.; Göksu, S.; Beydemir, Ş. Synthesis and paroxonase activities of novel bromophenols. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 1073-1079.
[43]
Türkeş, C.; Söyüt, H.; Beydemir, Ş. Inhibition effects of gemcitabine hydrochloride, acyclovir, and 5-fluorouracil on human serum paraoxonase-1 (hPON1): In vitro. Open J. Biochem., 2013, 1, 10-15.
[44]
Alım, Z.; Kılıç, D.; Köksal, Z.; Beydemir, Ş.; Özdemir, H. Assessment of the inhibitory effects and molecular docking of some sulfonamides on human serum paraoxonase 1. J. Biochem. Mol. Toxicol., 2017, 31(10)e21950
[45]
Arenas, M.; Rodríguez, E.; Sahebkar, A.; Sabater, S.; Rizo, D.; Pallisé, O.; Hernández, M.; Riu, F.; Camps, J.; Joven, J. Paraoxonase-1 activity in patients with cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol., 2018, 127, 6-14.
[46]
Alım, Z.; Beydemir, Ş. Some anticancer agents act on human serum paraoxonase‐1 to reduce its activity. Chem. Biol. Drug Des., 2016, 88(2), 188-196.
[47]
Ekinci, D.; Beydemir, Ş. Evaluation of the impacts of antibiotic drugs on PON 1; a major bioscavenger against cardiovascular diseases. Eur. J. Pharmacol., 2009, 617(1-3), 84-89.
[48]
Ekinci, D.; Şentürk, M.; Beydemir, Ş.; İrfan Küfrevioğlu, Ö.; Supuran, C.T. An alternative purification method for human serum paraoxonase 1 and its interactions with sulfonamides. Chem. Biol. Drug Des., 2010, 76(6), 552-558.
[49]
İşgör, M.M.; Beydemir, Ş. Some cardiovascular therapeutics inhibit paraoxonase 1 (PON1) from human serum. Eur. J. Pharmacol., 2010, 645(1-3), 135-142.
[50]
Pla, A.; Rodrigo, L.; Hernandez, A.; Gil, F.; Lopez, O. Effect of metal ions and calcium on purified PON1 and PON3 from rat liver. Chem. Biol. Interact., 2007, 167(1), 63-70.
[51]
Jakubowski, H. Calcium-dependent human serum homocysteine thiolactone hydrolase a protective mechanism against protein n-homocysteinylation. J. Biol. Chem., 2000, 275(6), 3957-3962.
[52]
Josse, D.; Xie, W.; Renault, F.; Rochu, D.; Schopfer, L.M.; Masson, P.; Lockridge, O. Identification of residues essential for human paraoxonase (PON1) arylesterase/organophosphatase activities. Biochemistry, 1999, 38(9), 2816-2825.
[53]
Kuo, C-L.; La Du, B.N. Calcium binding by human and rabbit serum paraoxonases: structural stability and enzymatic activity. Drug Metab. Dispos., 1998, 26(7), 653-660.
[54]
Sorenson, R.C.; Primo-Parmo, S.L.; Kuo, C-L.; Adkins, S.; Lockridge, O.; La Du, B.N. Reconsideration of the catalytic center and mechanism of mammalian paraoxonase/arylesterase. Proc. Nat. Acad. Sci., 1995, 92(16), 7187-7191.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 6
Year: 2019
Page: [392 - 402]
Pages: 11
DOI: 10.2174/0929866526666190226162225
Price: $58

Article Metrics

PDF: 24
HTML: 12