Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Carbohydrate Scaffolds for the Study of the Autism-associated Bacterium, Clostridium bolteae

Author(s): Brittany Pequegnat and Mario A. Monteiro*

Volume 26, Issue 35, 2019

Page: [6341 - 6348] Pages: 8

DOI: 10.2174/0929867326666190225164527

open access plus

Abstract

A large number of children in the autism spectrum disorder suffer from gastrointestinal (GI) conditions, such as constipation and diarrhea. Clostridium bolteae is a part of a set of pathogens being regularly detected in the stool samples of hosts affected by GI and autism symptoms. Accompanying studies have pointed out the possibility that such microbes affect behaviour through the production of neurotoxic metabolites in a so-called, gut-brain connection. As an extension of our Clostridium difficile polysaccharide (PS)-based vaccine research, we engaged in the discovery of C. bolteae surface carbohydrates. So far, studies revealed that C. bolteae produces a specific immunogenic PS capsule comprised of disaccharide repeating blocks of mannose (Manp) and rhamnose (Rhap) units: α-D-Manp-(1→[-4)-β-D-Rhap- (1→3)-α-D-Manp-(1→]n. For vaccinology and further immunogenic experiments, a method to produce C. bolteae PS conjugates has been developed, along with the chemical syntheses of the PS non-reducing end linkage, with D-Rha or L-Rha, α-D-Manp-(1→4)-α-D-Rhap- (1→O(CH2)5NH2 and α-D-Manp-(1→4)-α-L-Rhap-(1→O(CH2)5NH2, equipped with an aminopentyl linker at the reducing end for conjugation purposes. The discovery of C. bolteae PS immunogen opens the door to the creation of non-evasive diagnostic tools to evaluate the frequency and role of this microbe in autistic subjects and to a vaccine to reduce colonization levels in the GI tract, thus impeding the concentration of neurotoxins.

Keywords: Clostridium bolteae, polysaccharide, synthesis, conjugate, TEMPO, autism, diagnostic, vaccine, gastrointestinal disorders, gut-brain axis.

[1]
Bradley, E.; Caldwell, P.; Underwood, L. Handbook of Psychopathology in Intellectual Disability; Tsakanikos, E.; McCarthy, J., Eds.; Springer New York, 2014, pp. 237-264.
[http://dx.doi.org/10.1007/978-1-4614-8250-5_16]
[2]
Finegold, S.M. Desulfovibrio species are potentially important in regressive autism. Med. Hypotheses, 2011, 77(2), 270-274.
[http://dx.doi.org/10.1016/j.mehy.2011.04.032] [PMID: 21592674]
[3]
Parracho, H.M.; Bingham, M.O.; Gibson, G.R.; McCartney, A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol., 2005, 54(Pt 10), 987-991.
[http://dx.doi.org/10.1099/jmm.0.46101-0] [PMID: 16157555]
[4]
Guarner, F.; Malagelada, J-R. Gut flora in health and disease. Lancet, 2003, 361(9356), 512-519.
[http://dx.doi.org/10.1016/S0140-6736(03)12489-0] [PMID: 12583961]
[5]
Toh, M.C.; Allen-Vercoe, E. The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts. Microb. Ecol. Health Dis., 2015, 26, 26309.
[PMID: 25634609]
[6]
Finegold, S.M.; Downes, J.; Summanen, P.H. Microbiology of regressive autism. Anaerobe, 2012, 18(2), 260-262.
[http://dx.doi.org/10.1016/j.anaerobe.2011.12.018] [PMID: 22202440]
[7]
Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.; Blennerhassett, P.; Macri, J.; McCoy, K.D.; Verdu, E.F.; Collins, S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011. 141(2), 599-609, 609.e1-609.e3.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052] [PMID: 21683077]
[8]
Arranga, T.; Viadro, C.I.; Underwood, L.; Herbert, M. Bugs, Bowels, and Behavior: The Groundbreaking Story of the Gut-Brain Connection; Skyhorse Publishing Company, Incorporated, 2013.
[9]
Valicenti-McDermott, M.; McVicar, K.; Rapin, I.; Wershil, B.K.; Cohen, H.; Shinnar, S. Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. J. Dev. Behav. Pediatr., 2006, 27(2)(Suppl.), S128-S136.
[http://dx.doi.org/10.1097/00004703-200604002-00011] [PMID: 16685179]
[10]
Finegold, S.M.; Molitoris, D.; Song, Y.; Liu, C.; Vaisanen, M-L.; Bolte, E.; McTeague, M.; Sandler, R.; Wexler, H.; Marlowe, E.M.; Collins, M.D.; Lawson, P.A.; Summanen, P.; Baysallar, M.; Tomzynski, T.J.; Read, E.; Johnson, E.; Rolfe, R.; Nasir, P.; Shah, H.; Haake, D.A.; Manning, P.; Kaul, A. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis., 2002, 35(Suppl. 1), S6-S16.
[http://dx.doi.org/10.1086/341914] [PMID: 12173102]
[11]
Song, Y.; Liu, C.; Molitoris, D.R.; Tomzynski, T.J.; Lawson, P.A.; Collins, M.D.; Finegold, S.M. Clostridium bolteae sp. nov., isolated from human sources. Syst. Appl. Microbiol., 2003, 26(1), 84-89.
[http://dx.doi.org/10.1078/072320203322337353] [PMID: 12747414]
[12]
MacFabe, D.F.; Cain, D.P.; Rodriguez-Capote, K.; Franklin, A.E.; Hoffman, J.E.; Boon, F.; Taylor, A.R.; Kavaliers, M.; Ossenkopp, K-P. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav. Brain Res., 2007, 176(1), 149-169.
[http://dx.doi.org/10.1016/j.bbr.2006.07.025] [PMID: 16950524]
[13]
MacFabe, D.F.; Rodríguez-Capote, K.; Hoffman, J.E.; Franklin, A.E.; Mohammad-Asef, Y.; Taylor, A.R.; Boon, F.; Cain, D.P.; Kavaliers, M.; Possmayer, F. A novel rodent model of autism: intraventricular infusions of propionic acid increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. Am. J. Biochem. Biotechnol., 2008, 4(2), 146-166.
[http://dx.doi.org/10.3844/ajbbsp.2008.146.166]
[14]
Macfabe, D.F. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb. Ecol. Health Dis., 2012, 23. Epub ahead of print
[http://dx.doi.org/10.3402/mehd.v3423i3400.19260] [PMID: 23990817]
[15]
Shultz, S.R.; MacFabe, D.F.; Ossenkopp, K-P.; Scratch, S.; Whelan, J.; Taylor, R.; Cain, D.P. Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology, 2008, 54(6), 901-911.
[http://dx.doi.org/10.1016/j.neuropharm.2008.01.013] [PMID: 18395759]
[16]
Bolte, E.R. Autism and Clostridium tetani. Med. Hypotheses, 1998, 51(2), 133-144.
[http://dx.doi.org/10.1016/S0306-9877(98)90107-4] [PMID: 9881820]
[17]
Song, Y.; Liu, C.; Finegold, S.M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol., 2004, 70(11), 6459-6465.
[http://dx.doi.org/10.1128/AEM.70.11.6459-6465.2004] [PMID: 15528506]
[18]
Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.; Granpeesheh, D.; Dixon, D.; Liu, M.; Molitoris, D.R.; Green, J.A., III Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 2010, 16(4), 444-453.
[http://dx.doi.org/10.1016/j.anaerobe.2010.06.008] [PMID: 20603222]
[19]
Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism, 2013, 4(1), 42-42.
[http://dx.doi.org/10.1186/2040-2392-4-42] [PMID: 24188502]
[20]
Finegold, S.M.; Song, Y.; Liu, C.; Hecht, D.W.; Summanen, P.; Könönen, E.; Allen, S.D. Clostridium clostridioforme: a mixture of three clinically important species. Eur. J. Clin. Microbiol. Infect. Dis., 2005, 24(5), 319-324.
[http://dx.doi.org/10.1007/s10096-005-1334-6] [PMID: 15891914]
[21]
Sandler, R.H.; Finegold, S.M.; Bolte, E.R.; Buchanan, C.P.; Maxwell, A.P.; Väisänen, M-L.; Nelson, M.N.; Wexler, H.M. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol., 2000, 15(7), 429-435.
[http://dx.doi.org/10.1177/088307380001500701] [PMID: 10921511]
[22]
Venugopal, A.A.; Johnson, S. Current state of Clostridium difficile treatment options. Clin. Infect. Dis., 2012, 55(Suppl. 2), S71-S76.
[http://dx.doi.org/10.1093/cid/cis355] [PMID: 22752868]
[23]
Srinivasan, A.; Dick, J.D.; Perl, T.M. Vancomycin resistance in staphylococci. Clin. Microbiol. Rev., 2002, 15(3), 430-438.
[http://dx.doi.org/10.1128/CMR.15.3.430-438.2002] [PMID: 12097250]
[24]
Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev., 2000, 13(4), 686-707.
[http://dx.doi.org/10.1128/CMR.13.4.686] [PMID: 11023964]
[25]
Monteiro, M.A. The design of a Clostridium difficile carbohydrate-based vaccine. Methods Mol. Biol., 2016, 1403, 397-408.
[http://dx.doi.org/10.1007/978-1-4939-3387-7_21] [PMID: 27076143]
[26]
Pequegnat, B.; Sagermann, M.; Valliani, M.; Toh, M.; Chow, H.; Allen-Vercoe, E.; Monteiro, M.A. A vaccine and diagnostic target for Clostridium bolteae, an autism-associated bacterium. Vaccine, 2013, 31(26), 2787-2790.
[http://dx.doi.org/10.1016/j.vaccine.2013.04.018] [PMID: 23602537]
[27]
Pequegnat, B. A Diagnostic Target Against Clostridium bolteae, Towards a Multivalent Vaccine for Autism-Related Gastric Bacteria; University of Guelph, 2013.
[28]
Bertolo, L.; Ewing, C.P.; Maue, A.; Poly, F.; Guerry, P.; Monteiro, M.A. The design of a capsule polysaccharide conjugate vaccine against Campylobacter jejuni serotype HS15. Carbohydr. Res., 2013, 366, 45-49.
[http://dx.doi.org/10.1016/j.carres.2012.11.017] [PMID: 23261782]
[29]
Ma, Z.; Bertolo, L.; Arar, S.; Monteiro, M.A. TEMPO-mediated glycoconjugation: a scheme for the controlled synthesis of polysaccharide conjugates. Carbohydr. Res., 2011, 346(2), 343-347.
[http://dx.doi.org/10.1016/j.carres.2010.11.021] [PMID: 21167478]
[30]
Pequegnat, B. Polysaccharide Vaccines for Enteric Pathogens: The Next Generation Multivalent Diarrhea Vaccine; University of Guelph, 2016.
[31]
Jiao, Y. Syntheses of Carbohydrate Antigens Expressed by Gastric-intestinal Bacteria and Conjugates Thereof; University of Guelph, 2016.
[32]
Kerékgyártó, J.; Kamerling, J.P.; Bouwstra, J.B.; Vliegenthart, J.F.; Lipták, A. Synthesis of four structural elements of xylose-containing carbohydrate chains from N-glycoproteins. Carbohydr. Res., 1989, 186(1), 51-62.
[http://dx.doi.org/10.1016/0008-6215(89)84004-2] [PMID: 2720704]
[33]
Fauré, R.; Shiao, T.C.; Damerval, S.; Roy, R. Practical synthesis of valuable d-rhamnoside building blocks for oligosaccharide synthesis. Tetrahedron Lett., 2007, 48(13), 2385-2388.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.122]
[34]
Ma, Z.; Zhang, J.; Kong, F. Concise syntheses of β-GlcNAcp-(1→ 6)-α-Manp-(1→ 6)-Manp and its dimer, and β-GlcNAcp-(1→ 2)-α-Manp-(1→ 6)-. Manp. Tetrahedron: Asymmetry, 2003, 14(17), 2595-2603.
[http://dx.doi.org/10.1016/S0957-4166(03)00570-6]
[35]
Ning, J.; Zhang, W.; Yi, Y.; Yang, G.; Wu, Z.; Yi, J.; Kong, F. Synthesis of β-(1-->6)-branched β-(1-->3) glucohexaose and its analogues containing an α-(1-->3) linked bond with antitumor activity. Bioorg. Med. Chem., 2003, 11(10), 2193-2203.
[http://dx.doi.org/10.1016/S0968-0896(03)00118-4] [PMID: 12713829]
[36]
Johnson, K.V.; Foster, K.R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol., 2018, 16(10), 647-655.
[http://dx.doi.org/10.1038/s41579-018-0014-3] [PMID: 29691482]
[37]
Ganeshapillai, J.; Vinogradov, E.; Rousseau, J.; Weese, J.S.; Monteiro, M.A. Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units. Carbohydr. Res., 2008, 343(4), 703-710.
[http://dx.doi.org/10.1016/j.carres.2008.01.002] [PMID: 18237724]
[38]
Bertolo, L.; Boncheff, A.G.; Ma, Z.; Chen, Y-H.; Wakeford, T.; Friendship, R.M.; Rosseau, J.; Weese, J.S.; Chu, M.; Mallozzi, M.; Vedantam, G.; Monteiro, M.A. Clostridium difficile carbohydrates: glucan in spores, PSII common antigen in cells, immunogenicity of PSII in swine and synthesis of a dual C. difficile-ETEC conjugate vaccine. Carbohydr. Res., 2012, 354, 79-86.
[http://dx.doi.org/10.1016/j.carres.2012.03.032] [PMID: 22533919]
[39]
Jiao, Y.; Ma, Z.; Hodgins, D.; Pequegnat, B.; Bertolo, L.; Arroyo, L.; Monteiro, M.A. Clostridium difficile PSI polysaccharide: synthesis of pentasaccharide repeating block, conjugation to exotoxin B subunit, and detection of natural anti-PSI IgG antibodies in horse serum. Carbohydr. Res., 2013, 378(0), 15-25.
[http://dx.doi.org/10.1016/j.carres.2013.03.018] [PMID: 23597587]
[40]
Monteiro, M.A.; Ma, Z.; Bertolo, L.; Jiao, Y.; Arroyo, L.; Hodgins, D.; Mallozzi, M.; Vedantam, G.; Sagermann, M.; Sundsmo, J.; Chow, H. Carbohydrate-based Clostridium difficile vaccines. Expert Rev. Vaccines, 2013, 12(4), 421-431.
[http://dx.doi.org/10.1586/erv.13.9] [PMID: 23560922]
[41]
Oberli, M.A.; Hecht, M.L.; Bindschädler, P.; Adibekian, A.; Adam, T.; Seeberger, P.H. A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem. Biol., 2011, 18(5), 580-588.
[http://dx.doi.org/10.1016/j.chembiol.2011.03.009] [PMID: 21609839]
[42]
Broecker, F.; Martin, C.E.; Wegner, E.; Mattner, J.; Baek, J.Y.; Pereira, C.L.; Anish, C.; Seeberger, P.H. Synthetic lipoteichoic acid glycans are potential vaccine candidates to protect from Clostridium difficile infections. Cell Chem. Biol., 2016, 23(8), 1014-1022.
[http://dx.doi.org/10.1016/j.chembiol.2016.07.009] [PMID: 27524293]
[43]
Kalelkar, S.; Glushka, J.; van Halbeek, H.; Morris, L.C.; Cherniak, R. Structure of the capsular polysaccharide of Clostridium perfringens Hobbs 5 as determined by NMR spectroscopy. Carbohydr. Res., 1997, 299(3), 119-128.
[http://dx.doi.org/10.1016/S0008-6215(97)00010-4] [PMID: 9163894]
[44]
Rocchetta, H.L.; Burrows, L.L.; Lam, J.S. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev., 1999, 63(3), 523-553.
[PMID: 10477307]
[45]
Ramm, M.; Wolfender, J-L.; Queiroz, E.F.; Hostettmann, K.; Hamburger, M. Rapid analysis of nucleotide-activated sugars by high-performance liquid chromatography coupled with diode-array detection, electrospray ionization mass spectrometry and nuclear magnetic resonance. J. Chromatogr. A, 2004, 1034(1-2), 139-148.
[http://dx.doi.org/10.1016/j.chroma.2004.02.023] [PMID: 15116923]
[46]
Watt, G.; Leoff, C.; Harper, A.D.; Bar-Peled, M. A bifunctional 3,5-epimerase/4-keto reductase for nucleotide-rhamnose synthesis in Arabidopsis. Plant Physiol., 2004, 134(4), 1337-1346.
[http://dx.doi.org/10.1104/pp.103.037192] [PMID: 15020741]
[47]
Institute, B. [Clostridium] bolteae WAL-14578;, Human Microbiome Project. 2015.
[48]
Davidson, J. Synthesis of Clostridium bolteae Capsular Polysaccharide Fragments: A Repeating Disaccharide Unit; University of Guelph, 2016.

© 2024 Bentham Science Publishers | Privacy Policy