Gender Difference Response of Male and Female Immunodeficiency Rats Treated with Tissue-specific Biomolecules

Author(s): Liliya V. Fedulova, Alexandr A. Basov, Ekaterina R. Vasilevskaya, Stepan S. Dzhimak*.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The modern immunology is targeted to the detailed study of various immunopathological conditions at the molecular and cellular level, development of new methods for the prevention, diagnostics and treatment of contagious and non-contagious diseases of humans and animals.

Methods: In the present work we took the rats with model of cyclophosphamide-induced immunodeficiency and studied the features of gender impact of the complex extract of immunocompetent organs (thymus, spleen and mesenteric lymph nodes) Sus scrofa and its separate fraction with molecular weight less than 30 kDa administered to male and female rats.

Results: The impact of gender differences and tissue-specific biomolecules (30 kDa fraction) on hematological parameters (leukocytes, erythrocytes, platelets), functional activity of immune system (IL-2, IL-4, IL-6, complement system, IgG, IgM), biochemical parameters of hepatocytes functioning (activity of ALP and LDG), carbohydrate metabolism (glucose) and lipid metabolism (triglycerides).

Conclusion: Decrease of ALP activity is caused by inhibition of bile formation in a liver after introduction of cytostatic agent, and in contrast to complex extract, the administration of fraction 30 kDa allows improving bile production in male rats.

Keywords: Gender differences, immunodeficiency, tissue-specific biomolecule, immunocompetent organ, genomic and proteomic technologies, biochemical indicators.

[1]
Ambrogini, E.; Que, X.; Wang, S.; Yamaguchi, F.; Weinstein, R.S.; Tsimikas, S.; Manolagas, S.C.; Witztum, J.L.; Jilka, R.L. Oxidation-specific epitopes restrain bone formation. Nat. Commun., 2018, 9(1), 2193.
[2]
McIlvried, L.A.; Borghesi, L.A.; Gold, M.S. Sex-, stress-, and sympathetic post-ganglionic neuron-dependent changes in the expression of pro- and anti-inflammatory mediators in rat dural immune cells. Headache, 2015, 55(7), 943-957.
[3]
Wesołowska, A.; Norbury, L.J.; Januszkiewicz, K.; Jedlina, L.; Jaros, S.; Zawistowska-Deniziak, A.; Zygner, W.; Wędrychowicz, H. Evaluation of the immune response of male and female rats vaccinated with cDNA encoding a cysteine proteinase of Fasciola hepatica (FhPcW1). Acta Parasitol., 2013, 58(2), 198-206.
[4]
Farahmand, M.; Nahrevanian, H. Application of recombinant proteins for serodiagnosis of visceral leishmaniasis in humans and dogs. Iran. Biomed. J., 2016, 20(3), 128-134.
[5]
Moulana, M.; Maranon, R.O. Regulation of blood pressure is influenced by gender: A study in obese Zucker rats. Life Sci., 2018, 209, 236-241.
[6]
Shishavan, N.G.; Abbasi, M.M.; Afshar, R.A.; Milani, P.Z.; Yahyavi, F. The effects of pomegranate (Punicagranatum L.) peel methanolic extract on methotrex-ate induced changes in hepatic antioxidant enzymes of rats. Jundishapur J. Nat. Pharm. Prod., 2017, 12(1), e57499.
[7]
Salehi, B.; Anil Kumar, N.V.; Şener, B.; Sharifi-Rad, M.; Kılıç, M.; Mahady, G.B.; Vlaisavljevic, S.; Iriti, M.; Kobarfard, F.; Setzer, W.N.; Ayatollahi, S.A.; Ata, A.; Sharifi-Rad, J. Medicinal plants used in the treatment of human immunodeficiency virus. Int. J. Mol. Sci., 2018, 19(5), 1459.
[8]
Bagheri, G.; Mirzaei, M.; Mehrabi, R.; Sharifi-Rad, J. Cytotoxic and anti-oxidant activities of alstoniascholaris, alstoniavenenata and moringaoleifera plants from India. Jundishapur J. Nat. Pharm. Prod., 2016, 11(3), e31129.
[9]
Bastani, P.; Homayouni, A.; Norouzi-Panahi, L.; Tondhoush, A.; No-rouzi, S.; Mehrabany, E.; Kasaie, Z. The mechanisms of immune system regulation by probiotics in immune-related diseases. J. Pharm. Nutr. Sci., 2016, 6(3), 105-111.
[10]
Kalantari, H.; Houshmand, G.; Hasanvand, A.; Kalantar, M.; Goudarzi, M.; Haghighian, H.K. Ameliorative effects of red lentil extract on sodium arsenite-induced oxidative stress in rats. Jundishapur J. Nat. Pharm. Prod., 2017, 12, e64309.
[11]
Fedulova, L.V.; Vasilevskaya, E.R.; Kotenkova, E.A.; Elkina, A.A.; Baryshev, M.G.; Lisitsyn, A.B. Influence of different polypeptides fractions derived from Sus Scrofa immune organs on the rats immunological reactivity. J. Pharm. Nutr. Sci., 2017, 7(2), 35-40.
[12]
Werz, O.; Gerstmeier, J.; Libreros, S.; De La Rosa, X.; Werner, M.; Norris, P.C.; Chiang, N.; Serhan, C.N. Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat. Commun., 2018, 9(1), 02538.
[13]
Raposo, B.; Merky, P.; Lundqvist, C.; Yamada, H.; Urbonaviciute, V.; Niaudet, C.; Viljanen, J.; Kihlberg, J.; Kyewski, B.; Ekwall, O.; Holmdahl, R.; Bäcklund, J. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat. Commun., 2018, 9(1), 353.
[14]
Tipton, A.J.; Sullivan, J.C. Sex differences in T cells in hypertension Clin. Ther, 2014, 36(12), 1882-1900.
[http://dx.doi.org/10.1016/j.clinthera.2014.07.011.]
[15]
Lori, A.; Perrotta, M.; Lembo, G.; Carnevale, D. The spleen: A hub connecting nervous and immune systems in cardiovascular and metabolic diseases. Int. J. Mol. Sci., 2017, 18(6), 1216.
[16]
Baradaran, M.; Jalali, A.; Soorki, M.N.; Galehdari, H. A novel defensin-like peptide associated with two other new cationic antimicrobial peptides in transcriptome of the Iranian Scorpion Venom. Iran. Biomed. J., 2017, 21(3), 190-196.
[17]
Strekalova, T.; Evans, M.; Chernopiatko, A.; Couch, Y.; Costa-Nunes, J.; Cespuglio, R.; Chesson, L.; Vignisse, J.; Steinbusch, H.W.; Anthony, D.C.; Pomytkin, I.; Lesch, K.P. Deuterium content of water increases depression susceptibility: The potential role of a serotonin-related mechanism. Behav. Brain Res., 2015, 277, 237-244.
[18]
Pershin, S.M.; Ismailov, E.S.; Dibirova, M.M.; Akhmedov, M.E.; Tagirova, F.V.; Shashkov, D.I.; Abdulmagomedova, Z.N. Multiple increase in productivity of the yeast at reducing the fraction of D2O in water. Dokl. Biochem. Biophys., 2017, 476, 299-302.
[19]
Rehakova, R.; Klimentova, J.; Cebova, M.; Barta, A.; Matuskova, Z.; Labas, P.; Pechanova, O. Effect of deuterium-depleted water on selected cardiometabolic parameters in fructose-treated rats. Physiol. Res., 2016, 65(3), S401-S407.
[20]
Dzhimak, S.S.; Basov, A.A.; Elkina, A.A.; Fedulova, L.V.; Kotenkova, E.A.; Vasilevskaya, E.R.; Lyasota, O.M.; Baryshev, M.G. Influence of deuterium-depleted water on hepatorenal toxicity. Jundishapur J. Nat. Pharm. Prod., 2018, 13(2), e69557.
[21]
Syroeshkin, A.V.; Antipova, N.V.; Zlatska, A.V.; Zlatskiy, I.A.; Skylska, M.D.; Grebennikova, T.V.; Goncharuk, V.V. The effect of the deuterium depleted water on the biological activity of the eukaryotic cells. J. Trace Elem. Med. Biol., 2018, 50, 629-633.
[22]
Boros, L.G.; D’Agostino, D.P.; Katz, H.E.; Roth, J.P.; Meuillet, E.J.; Somlyai, G. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle. Med. Hypotheses, 2016, 87, 69-74.
[23]
Kit, O.I.; Shikhliarova, A.I.; Zhukova, G.V.; Dzhimak, S.S.; Barishev, M.G.; Kurkina, T.A.; Shirnina, E.A.; Protasova, T.P. Relation of antistress and geroprotec-tive effects of deuterium depleted water in aging female rats. Cardiometry, 2017, 10, 35-42.
[24]
Luo, A-L.; Zheng, Y-L.; Cong, F-S. Research progress of biological ef-fects of deuterium-depleted water. J. Shanghai Jiaotong University (Medical Science), 2018, 38(4), 467-471.
[25]
Rasooli, A.; Fatemi, F.; Akbarzadeh, K.; Dini, S.; Bahremand, S. Synergistic protective activity of deuterium depleted water (DDW) and saturejarechingeri essential oil on hepatic oxidative injuries induced by acetaminophen in rats. J. Essential Oil Bearing Plants, 2016, 19(5), 1086-1101.
[26]
Baryshev, M.G.; Dzhimak, S.S.; Bolotin, S.N.; Frolov, V.Y.; Dolgov, M.A. Methods for obtaining water with low content of deuterium. Int. J. Engin. Res. Applicat., 2013, 3(1), 523-526.
[27]
Rudyk, M.P. Pozur, V.V.; Voieikova, D.O.; Hurmach, Y.V.; Khranovska, N.M.; Skachkova, O.V.; Svyatetska, V.M.; Fedorchuk, O.G.; Skivka, L.M.; Berehova, T.V.; Ostapchenko, L.I. Sex-based differences in phagocyte metabolic profile in rats with monosodium glutamate-induced obesity. Sci. Rep., 2018, 8(1), 5419.
[http://dx.doi.org/10.1038/s41598-018-23664-0]
[28]
Pooley, A.E.; Benjamin, R.C.; Sreedhar, S.; Eagle, A.L.; Robison, A.J.; Mazei-Robison, M.S.; Breedlove, S.M.; Jordan, C.L. Sex differences in the traumatic stress response: the role of adult gonadal hormones. Biol. Sex Differ., 2018, 9(1), 32.
[29]
Stam, R. Croiset, G.; Bruijnzeel, A.W.; Visser, T.J.; Akkermans, L.M.; Wiegant, V.M. Sex differences in long-term stress-induced colonic, behavioural and hormonal disturbances. Life Sci., 1999, 65(26), 2837-2849.
[30]
Denes, A.; Miyan, J.A. Brain-Immune interactions in health and disease. Front. Neurosci., 2014, 8, 382.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 3
Year: 2019
Page: [245 - 253]
Pages: 9
DOI: 10.2174/1389201020666190222184814

Article Metrics

PDF: 18
HTML: 6