Pharmacophores Modeling in Terms of Prediction of Theoretical Physicochemical Properties and Verification by EXPERIMENTAL correlations of Carbacylamidophosphates (CAPh) and Sulfanylamidophosphates (SAPh) Tested as New Carbonic Anhydrase Inhibitors

Author(s): Vladimir Amirkhanov*, Abdur Rauf, Taibi Ben Hadda*, Vladimir Ovchynnikov, Viktor Trush, Muhammad Saleem, Muslam Raza, Tayyeba Rehman, Hsaine Zgou, Usama Shaheen, Thoraya A. Farghaly*.

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: The function of Carbonic anhydrase is to facilitate the physiological process i.e. interconversion of CO2 to HCO3 - by hydration. Carbonic anhydrase enzyme plays a vital role in different physiological processes to regulate pH as well as regulate the inner environment of CO2 and secretion of electrolytes.

Methods: Six representatives of amidophosphate derivatives (L1-L6) were synthesized and evaluated for their biological activities against carbonic anhydrase enzyme.

Results: Out of six derivatives, L1 (IC50 = 12.5 ± 1.35 µM), and L2 (IC50 = 3.12 ± 0.45 µM) showed potent activity against BCA-II. While (L3, L4 and L5) showed weak inhibitory activity with IC50 values of 24.5 ± 2.25, 55.5± 1.60, and 75.5 ± 1.25 µM, respectively and were found to be weak inhibitors of carbonic anhydrase as compared to acetazolamide (IC50 =0.12± 0.03µM), used as standard inhibitor.

A computational Petra/Osiris/Molinspiration/DFT (POM/DFT) based model has been expanded for the determination of physicochemical parameters governing the bioactivity amidophosphate derivatives (L1-L6) containing (O1 --- O2) pharmacophore site. The six compounds (L1-L6) analyzed here were previously experimentally and now virtually screened for their anti-carbonic anhydrase activity.

Conclusion: The highest anti-carbonic anhydrase activity was obtained for compound L2, which exhibited excellent bioactivity (% of inhibition = 95%), comparable to acetazolamide (% of inhibition = 89%). The compound L3 represents increased activity as compared to its analogues (L4-L6). The increase of bioactivity from L3 to L4-L6 could be attributed to the presence of a minimum of steric effect of substituents of P=O moiety which plays a decisive template part in the organization of anti-carbonic anhydrase (O1---O2) phramacophore site. Moreover, it is inexpensive, has little side effects and possible inclusions in selective anti-carbonic anhydrase agents design.

Keywords: Amidophosphate derivatives, carbonic anhydrase, acetazolamide, docking, Petra/Osiris/Molinspiration (POM) analyses, pharmacophore site identification.

Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
Supuran, C.T.; Scozzafava, A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin. Ther. Pat., 2000, 10, 575-600.
Maren, T.H. Carbonic anhydrase: Chemistry, physiology and inhibition. Physiol. Rev., 1967, 47, 595-781.
Gawryszewska, P.; Smolenski, P. Ligands synthesis, characterization and role in biotechnology; NOVA Publishers: New York, 2014.
Gholivand, K.; Dorosti, N. Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity. Chem. Pap., 2012, 66(8), 765-771.
Gholivand, K.; Dorosti, N. Some new compounds with P(E)NHC(O) (E = lone pair, O, S) linkage: Synthesis, spectroscopic, crystal structures, theoretical studies, and antimicrobial evaluation. Monatsh. Chem., 2013, 144, 1417-1425.
Prylutska, S.; Grynyuk, I.; Grebinyk, A.; Hurmach, V.; Shatrava, Iu.; Sliva, T.; Amirkhanov, V.; Prylutskyy, Yu.; Matyshevska, O.; Slobodyanik, M.; Frohme, M.; Ritter, U. Cytotoxic effects of dimorfolido-N-trichloroacetylphosphorylamide and dimorfolido-N-benzoylphosphorylamide in combination with C60 fullerene on leukemic cells and docking study of their interaction with DNA. Nanoscale Res. Lett., 2017, 12, 124-132.
Zabirov, N.; Shamsevaleev, F.; Cherkasov, R. N-phosphorylated amides and thioamides. Russ. Chem. Rev., 1991, 60(10), 1128-1144.
Kiran, Y.B.; Gunasekar, D.; Reddy, C.D. Synthesis and bioactivity of some new N-aryl/alkyl/cyclohexyl-N'-(2,3-dihydro-2-oxo-4H-benz[e] [1,3,2] oxazaphosphorin-2-yl) ureas. Pest Manag. Sci., 2005, 61, 1016-1023.
Grimes, K.D.; Lu, Y-J.; Zhang, Y-M. Novel acylphosphate mimics that target PlsY, an essential, acyltransferase in gram-positive bacteria. ChemMedChem, 2008, 3, 1936-1945.
Amirkhanov, V.M.; Ovchynnikov, V.A.; Trush, V.A.; Gawryszewska, P.; Jerzykiewicz, L.B. Chapter 7. Powerful new ligand systems: Carbacylamidophosphates (CAPh) and sulfonylamidophosphates (SAPh) p. 199 - 248. (in the book “Ligands. Synthesis, Characterization and Role in Biotechnology. NOVA Publishers: New York,, 2014.
Ashiq, U.; Jamal, R.A.; Saleem, M.; Mahroof-Tahir, M. Alpha-glucosidase and carbonic anhydrase inhibition studies of Pd (II)-hydrazide complexes. Arab. J. Chem., 2017, 10, 488-499.
Guex, N.; Peitsch, M.C. SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
Li, Z.; Wan, H.; Shi, Y.; Ouyang, P. Personal experience with four kinds of chemical structure drawing software: Review on chemdraw, chemwindow, ISIS/draw, and chemsketch. J. Chem. Inf. Comput. Sci., 2004, 44(5), 1886-1890.
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4, 17-33.
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
Hsu, K-C.; Chen, Y-F.; Lin, S-R.; Yang, J-M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(Suppl. 1), S33.
DeLano, W. L. The PyMOL molecular graphics system, 2002.
Saito, R.; Sato, T.; Ikai, A.; Tanaka, N. Structure of bovine carbonic anhydrase II at 1.95 A resolution. Acta Crystallograph. Sect. D Biol. Crystallogr., 2004, 60(4), 792-795.
Saeed, A.; Zaib, S.; Pervez, A.; Mumtaz, A.; Shahid, M.; Iqbal, J. Synthesis, molecular docking studies, and in vitro screening of sulfanilamide-thiourea hybrids as antimicrobial and urease inhibitors. Med. Chem. Res., 2013, 22(8), 3653-3662.
Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Ben Hadda, T.; Shaheen, U.; Patel, S.; Fischmeiste, R.; Legssyer, A. Antihypertensive and vasodilator effects of methanolic extract of Inulaviscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother., 2017, 93, 62-69.
Rauf, A.; Uysal, S.; Ben Hadda, T.; Siddiqui, B.S.; Khan, H.; Khan, M.A. IjazIjaz, M.; Mubarak, M. S.; Bawazeer, S.; Abu-Izneid, T.; Khan, A.; Farooq, U. Antibacterial, cytotoxic and phytotoxic profile of three medicinal plants collected from the Pakistan. Marmara Pharm. J., 2017, 21, 261-268.
Genc, M.; Genc, Z.K.; Tekin, S.; Sandal, S.; Sirajuddin, M.; Ben Hadda, T. Design, Synthesis, in vitro antiproliferative activity, binding modeling of 1,2,4-triazoles as new anti-breast cancer agents acta. Chim. Slov., 2016, 63(4), 726-737.
Mabkhot, Y.N.; Arfan, M.; Zgou, H.; Genc, Z.K.; Genc, M.; Rauf, A.; Bawazeer, S.; Ben Hadda, T. How to improve antifungal bioactivity: POM and DFT study of some chiral amides derivatives of diacetyl-L-tartaric acid and amines. Res. Chem. Intermed., 2016, 42, 8055-8068.
Rauf, A.; Uddin, G.; Siddiqui, B.S.; Khan, H.; Rehman, M.; Warad, I.; Ben Hadda, T.; Patel, S.; Khan, A.; Farooq, U. POM analysis of phytotoxic agents from pistaciaintegerrima stewart. Curr. Bioact. Compd., 2015, 11, 231-238.
Mabkhot, Y.; Alatibi, A.; El-sayed, N.; Kheder, N.; Wadood, A.; Rauf, A.; Bawazeer, S.; Al-Showiman, S.; Ben Hadda, T. Experimental-computational evaluation of antimicrobial activity of some novel armed thiophene derivatives. Molecules, 2016, 21(2), 222.
Tatar, E.; Şenkardeş, S.; Sellitepe, H.E.; Küçükgüzel, Ş.G.; Karaoğlu, Ş.A.; Bozdeveci, A.; De Clercq, E.; Pannecouque, C.; Ben Hadda, T.; Küçükgüzel, İ. Synthesis, prediction of molecular properties and antimicrobial activity of some acylhydrazones derived from N-(arylsulfonyl)methionine. Turk. J. Chem., 2016, 40, 510-534.
Tighadouni, S.; Radi, S.; Sirajuddin, M.; Akkurt, M.; Özdemir, N.; Ahmad, M.; Mabkhot, Y.N.; Ben Hadda, T. In vitro antifungal, anticancer activities and POM analyses of a novel bioactive schiff base 4-[(E)-furan-2-ylmethylidene]aminop-henol: Synthesis, characterization and crystal structure. J. Chem. Soc. Pak., 2016, 38, 157-165.
Sajid, Z.; Ahmad, M.; Aslam, S.; Ashfaq, U.A.; Zahoor, A.F.; Saddique, F.A.; Parvez, M.; Hameed, A.; Sultan, S.; Zgou, H.; Ben Hadda, T. Novel armed pyrazolobenzothiazine derivatives: Synthesis, X-ray crystal structure and POM analyses of biological activity against drug resistant clinical isolate of staphylococus aureus. Pharm. Chem. J., 2016, 50, 172-180.
Rauf, A.; Uddin, G.; Siddiqui, B.S.; Khan, H.; Rehman, M.; Warad, I.; Ben Hadda, T.; Patel, S.; Khan, A.; Farooq, U. POM analysis of phytotoxic agents from pistaciaintegerrima stewart. current bioactive compounds. Curr. Bioact. Compd., 2015, 11(4), 231-238.
Pervez, H.; Ahmad, M.; Hadda, T.B.; Toupet, L.; Naseer, M.M. Synthesis and fluorine-mediated interactions in methanol-encapsulated solid state self-assembly of an isatin-thiazoline hybrid. J. Mol. Struct., 2015, 1098, 124-129.
Abdelhady, M.I.S.; Kamal, A.M.; Rauf, A.; Mubarak, M.S.; Ben Hadda, T. Bioassay-guided isolation and POM analyses of a new immunomodulatory polyphenolic constituent from Callistemon Viridiflorus. Nat. Prod. Res., 2016, 30, 1131-1135.
Header, E.; ElSawy, N.; El-Boshy, M.; Basalamah, M.; Mubarak, M. S.; Ben Hadda, T. POM analyses of constituents of rosmarinus officinalis and their synergistic effect in experimental diabetic rats. J. Bioanal. Biomed., 2015, 15(7), 018-023.
Ben Hadda, T.; Genc, Z.K.; Masand, V.H.; Nebbache, N.; Warad, I.; Jodeh, S.; Genc, M.; Mabkhot, Y.N.; Barakat, A.; Salgado-Zamora, H. Computational POM and DFT evaluation of experimental in-vitro cancer inhibition of staurosporine-ruthenium(II) complexes: The power force of organometallics in drug design. Acta Chim. Slov., 2015, 62, 679-688.
Sheikh, J.; Taile, V.; Ghatole, A.; Ingle, V.; Genc, M.; Lahsasni, S.; Ben Hadda, T. Hatzade. K. Antimicrobial/antioxidant activity and POM analyses of novel 7-O-b-D-glucopyranosyloxy-3-(4,5-disubstituted imidazol-2-yl)-4H-chromen-4-ones. Med. Chem. Res., 2015.
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
Derkatsch, G.; Dregval, G.; Kirsanow, A. Russian J. Gen. Chem., 1961, 31, 2385-2390.. (Engl. Transl.) 2223-2228.
Amirkhanov, V.M.; Ovchynnikov, V.A.; Glowiak, T.; Kozlowski, H. Crystal and molecular structures of N, N’-Diphenyl-N’’- trichloroacetylphopshortriamide and N, N’-Tetraethyl-N’’- benzoylphosphortriamide. The effect of various substituents on the structural parameters of the [C(O)N(H)P(O)] moiety. Z. Naturforsch , 1997, 52 b, 1331-1336..
Gubina, K.E.; Ovchynnikov, V.A.; Amirkhanov, V.M.; Skopenko, V.V.; Shishkin, O.V. Carbacylamidophosphates: Synthethis and structure of N, N’Tetramethyl-N’’-benzoylphosphoryltriamide and Dimorpholido-N-benzoylphosphorylamide, Z. Naturforsch, 2000, 55 b, 495-498. .
Kirsanow, A.; Schewtschenko, A. Russian J. Gen. Chem, 1954, 24, 474-484. . (Engl. Transl.) 483-492
Kirsanow, A.; Schewtschenko, V. Zhurnal Obshchei Khimii., 1954, 24, 1980-1993. Engl. Ausg., 1949-1962.
Kirsanow, A.; Makitra, R. Russ. J. Gen. Chem., 1955, 36, 2134-2137.
Saleem, M.; Saeed, A.; Wahab, A.; Khan, A.; Abbasi, S.; Khan, W.; Khan, S.B.; Choudhary, M.I. Benzamide sulfonamide derivatives: Potent inhibitors of carbonic anhydrase-II. Med. Chem. Res., 2016, 25, 438-448.
Fleming, J. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976, pp. 111-155.
Sajan, D.; Lakshmi, K.U.; Erdogdu, Y.; Joe, I.H. Molecular structure and vibrational spectra of 2, 6-bis (benzylidene) cyclohexanone: A density functional theoretical study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2011, 78A, 113-121.
Eren, B.; Unal, A. Molecular structure and spectroscopic analysis of 1,4-Bis(1-methyl-2-benzimidazolyl) benzene; XRD, FT-IR, Dispersive-Raman, NMR and DFT studies. Spectrochim. Acta Part A., 2013, 103, 222-231.
Barakat, A.; Soliman, S.M.; Al-Majid, A.M.; Lotfy, G.; Ghabbour, H.A.; Fun, H.; Yousuf, S.; Choudhary, M.I.; Wadood, A. Synthesis and structure investigation of novel pyrimidine-2,4,6-trione derivatives of highly potential biological activity as anti-diabetic agent. J. Mol. Struct., 2015, 1098, 365-376.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [1015 - 1027]
Pages: 13
DOI: 10.2174/1389557519666190222172757
Price: $58

Article Metrics

PDF: 16