Effects of Acute and Chronic Treatment of Novel Psychotropic Drug, 8- (Trifluoromethyl)-1, 2, 3, 4, 5-benzopentathiepin-6-amine Hydrochloride (TC-2153), on the Behavior of Zebrafish (Danio Rerio): A Comparison with Fluoxetine

Author(s): Alexander Kulikov, Nadezhda Sinyakova, Elizabeth Kulikova, Tatyana Khomenko, Nariman Salakhutdinov, Victor Kulikov, Konstantin Volcho*.

Journal Name: Letters in Drug Design & Discovery

Volume 16 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Striatal-enriched Tyrosine Phosphatase (STEP) plays a key role in the mechanisms of neuronal signaling and is a potential molecular target for new generation of psychotropic drugs. STEP inhibitor, 8-(trifluoromethyl-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), shows anxiolytic effect on mice. Zebrafish (Danio rerio) is a suitable model for the study of anxiety pharmacology.

Objective: The objective of this study is to investigate the effects of acute and chronic TC-2153 treatment on zebrafish anxiety-related behavior.

Methods: The effects of acute (0.125 and 0.25 mg/l, 3 h) and chronic (0.125 mg/l, 14 days) administration of TC-2153 on locomotion and anxiety-related behavior (time spent near the bottom and mean distance from the bottom) of adult zebrafish in the Novel Tank (NT) test were compared with those of the same doses of fluoxetine chosen as a positive control.

Results: Acute treatment with 0.125 mg/l and 0.25 mg/l of TC-2153 or fluoxetine decreased time spent near the bottom, increased time spent near the surface and increased mean distance from the bottom of tank. Chronic treatment with 0.125 mg/l of TC-2153 reduced only time spent near the tank bottom without any effect on time spent near the surface and mean distance from the bottom, while chronic administration of 0.125 mg/l of fluoxetine altered these three indices of anxiety.

Conclusion: Both acute and chronic TC-2153 produces anxiety-like effect indicating STEP involved in the mechanism of anxiety-related behavior in zebrafish. At the same time, chronic treatment with TC-2153 reduced locomotor activity. Zebrafish is a promising laboratory object to study the role of STEP in the nervous system.

Keywords: TC-2153, fluoxetine, acute treatment, chronic treatment, anxiolytic-like effect, novel tank test, zebrafish.

[1]
Fitzpatrick, C.J.; Lombroso, P.J. The Role of striatal-enriched protein tyrosine phosphatase (STEP) in cognition. Front. Neuroanat., 2011, 5, 47.
[http://dx.doi.org/10.3389/fnana.2011.00047] [PMID: 21863137]
[2]
Kamceva, M.; Benedict, J.; Nairn, A.C.; Lombroso, P.J. Role of striatal-enriched tyrosine phosphatase in neuronal function. Neural Plast., 2016, 20168136925
[http://dx.doi.org/10.1155/2016/8136925] [PMID: 27190655]
[3]
Goebel-Goody, S.M.; Baum, M.; Paspalas, C.D.; Fernandez, S.M.; Carty, N.C.; Kurup, P.; Lombroso, P.J. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol. Rev., 2012, 64(1), 65-87.
[http://dx.doi.org/10.1124/pr.110.003053] [PMID: 22090472]
[4]
Karasawa, T.; Lombroso, P.J. Disruption of striatal-enriched protein tyrosine phosphatase (STEP) function in neuropsychiatric disorders. Neurosci. Res., 2014, 89, 1-9.
[http://dx.doi.org/10.1016/j.neures.2014.08.018] [PMID: 25218562]
[5]
Khomenko, T.M.; Tolstikova, T.G.; Bolkunov, A.V.; Dolgikh, M.P.; Pavlova, A.V.; Korchagina, D.V.; Volcho, K.P.; Salakhut-dinov, N.F. 8-(Trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-am-ine: novel aminobenzopentathiepine having in vivo anticonvulsant and anxiolytic activities. Lett. Drug Des. Discov., 2009, 6, 464-467.
[http://dx.doi.org/10.2174/157018009789057544]
[6]
Xu, J.; Chatterjee, M.; Baguley, T.D.; Brouillette, J.; Kurup, P.; Ghosh, D.; Kanyo, J.; Zhang, Y.; Seyb, K.; Ononenyi, C.; Foscue, E.; Anderson, G.M.; Gresack, J.; Cuny, G.D.; Glicksman, M.A.; Greengard, P.; Lam, T.T.; Tautz, L.; Nairn, A.C.; Ellman, J.A.; Lombroso, P.J. Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer’s disease. PLoS Biol., 2014, 12(8)e1001923
[http://dx.doi.org/10.1371/journal.pbio.1001923] [PMID: 25093460]
[7]
Kulikov, A.V.; Tikhonova, M.A.; Kulikova, E.A.; Volcho, K.P.; Khomenko, T.M.; Salakhutdinov, N.F.; Popova, N.K. Antidepressant activity of 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin- 6-amine hydrochloride (TC-2153): Comparison with classical antidepressants. Lett. Drug Des. Discov., 2014, 11, 169-173.
[http://dx.doi.org/10.2174/15701808113106660079]
[8]
Kulikova, E.A.; Volcho, K.P.; Salakhutdinov, N.F.; Kulikov, A.V. Benzopentathiepine derivative, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), as a promising antidepressant of new generation. Lett. Drug Des. Discov., 2017, 14, 974-984.
[http://dx.doi.org/10.2174/1570180814666161121112417]
[9]
Kulikova, E.; Kulikov, A. Striatal-enriched tyrosine protein phosphatase (STEP) in the mechanisms of depressive disorders. Curr. Protein Pept. Sci., 2017, 18(11), 1152-1162.
[http://dx.doi.org/10.2174/1389203718666170710121532] [PMID: 28699511]
[10]
Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci., 2014, 35(2), 63-75.
[http://dx.doi.org/10.1016/j.tips.2013.12.002] [PMID: 24412421]
[11]
Stewart, A.M.; Braubach, O.; Spitsbergen, J.; Gerlai, R.; Kalueff, A.V. Zebrafish models for translational neuroscience research: From tank to bedside. Trends Neurosci., 2014, 37(5), 264-278.
[http://dx.doi.org/10.1016/j.tins.2014.02.011] [PMID: 24726051]
[12]
Stewart, A.; Gaikwad, S.; Kyzar, E.; Green, J.; Roth, A.; Kalueff, A.V. Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology, 2012, 62(1), 135-143.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.037] [PMID: 21843537]
[13]
Egan, R.J.; Bergner, C.L.; Hart, P.C.; Cachat, J.M.; Canavello, P.R.; Elegante, M.F.; Elkhayat, S.I.; Bartels, B.K.; Tien, A.K.; Tien, D.H.; Mohnot, S.; Beeson, E.; Glasgow, E.; Amri, H.; Zukowska, Z.; Kalueff, A.V. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res., 2009, 205(1), 38-44.
[http://dx.doi.org/10.1016/j.bbr.2009.06.022] [PMID: 19540270]
[14]
Maximino, C.; Puty, B.; Benzecry, R.; Araújo, J.; Lima, M.G.; de Jesus Oliveira Batista, E.; Renata de Matos Oliveira, K.; Crespo-Lopez, M.E.; Herculano, A.M. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology, 2013, 71, 83-97.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.006] [PMID: 23541719]
[15]
Singer, M.L.; Oreschak, K.; Rhinehart, Z.; Robison, B.D. Anxiolytic effects of fluoxetine and nicotine exposure on exploratory behavior in zebrafish. Peer. J., 2016, 4e2352
[http://dx.doi.org/10.7717/peerj.2352] [PMID: 27635325]
[16]
Charan, J.; Kantharia, N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother., 2013, 4(4), 303-306.
[http://dx.doi.org/10.4103/0976-500X.119726] [PMID: 24250214]
[17]
Kulikov, A.V.; Tikhonova, M.A.; Kulikov, V.A. Automated measurement of spatial preference in the open field test with transmitted lighting. J. Neurosci. Methods, 2008, 170(2), 345-351.
[http://dx.doi.org/10.1016/j.jneumeth.2008.01.024] [PMID: 18342949]
[18]
Gerlai, R. Zebrafish antipredatory responses: A future for translational research? Behav. Brain Res., 2010, 207(2), 223-231.
[http://dx.doi.org/10.1016/j.bbr.2009.10.008] [PMID: 19836422]
[19]
Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 45, 54-63.
[http://dx.doi.org/10.1016/j.pnpbp.2013.04.009] [PMID: 23602950]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 12
Year: 2019
Page: [1321 - 1328]
Pages: 8
DOI: 10.2174/1570180816666190221162952
Price: $65

Article Metrics

PDF: 27
HTML: 2
EPUB: 1
PRC: 2