Evaluation of the Radioprotective Effects of Melatonin Against Ionizing Radiation-Induced Muscle Tissue Injury

Author(s): Dheyauldeen Shabeeb, Mansoor Keshavarz, Alireza Shirazi*, Gholamreza Hassanzadeh*, Mohammed Reza Hadian, Azin Nowrouzi, Masoud Najafi*, Ahmed Eleojo Musa.

Journal Name: Current Radiopharmaceuticals

Volume 12 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Radiotherapy (RT) is a treatment method for cancer using ionizing radiation (IR). The interaction between IR with tissues produces free radicals that cause biological damages.As the largest organ in the human body, the skeletal muscles may be affected by detrimental effects of ionizing radiation. To eliminate these side effects, we used melatonin, a major product secreted by the pineal gland in mammals, as a radioprotective agent.

Materials and Methods: For this study, a total of sixty male Wistar rats were used. They were allotted to 4 groups: control (C), melatonin (M), radiation (R) and melatonin + radiation (MR). Rats’ right hind legs were irradiated with 30 Gy single dose of gamma radiation, while 100 mg/kg of melatonin was given to them 30 minutes before irradiation and 5 mg/ kg once daily afternoon for 30 days. Five rats in each group were sacrificed 4, 12 and 20 weeks after irradiation for histological and biochemical examinations.

Results: Our results showed radiation-induced biochemical, histological and electrophysiological changes in normal rats’ gastrocnemius muscle tissues. Biochemical analysis showed that malondialdehyde (MDA) levels significantly elevated in R group (P<0.001) and reduced significantly in M and MR groups after 4, 12, and 20 weeks (P<0.001), However, the activity of catalase (CAT) and superoxide dismutase(SOD)decreased in the R group and increased in M and MR groups for the same periods of time compared with the C group (P<0.001), while melatonin administration inverted these effects( P<0.001).Histopathological examination showed significant differences between R group for different parameters compared with other groups (P<0.001). However, the administration of melatonin prevented these effects(P<0.001). Electromyography (EMG) examination showed that the compound action potential (CMAP) value in the R group was significantly reduced compared to the effects in the C and M groups after 12 and 20 weeks (P<0.001). The administration of melatonin also reversed these effects (P<0.001).

Conclusion: Melatonin can improve biochemical, electrophysiological and morphological features of irradiated gastrocnemius muscle tissues.Our recommendation is that melatonin should be administered in optimal dose. For effective protection of muscle tissues, and increased therapeutic ratio of radiation therapy, this should be done within a long period of time.

Keywords: Ionizing radiation, radiation therapy, skeletal muscle, complications, melatonin, malondialdehyde, electromyography.

[1]
Viana, W.; Lambertz, D.; Borges, E.; Melo, J.; Lambertz, K.; Amaral, A. Late effects of radiation on skeletal muscle: An open Field of Research. J. Biomed. Sci. Eng., 2015, 8(08), 555.
[http://dx.doi.org/[hhtp://10.4236/jbise.2015.88052]
[2]
Hannig, J.; Zhang, D.; Canaday, D.J.; Beckett, M.A.; Astumian, R.D.; Weichselbaum, R.R.; Lee, R.C. Surfactant sealing of membranes permeabilized by ionizing radiation. Radiat. Res, 2000, 154(2), 171-177.
[http://dx.doi.org/10.1667/0033-7587(2000)154[0171:SSOMPB]2.0.CO;2]] [PMID: 10931689]
[3]
Deacon, J.; Peckham, M.J.; Steel, G.G. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother. Oncol., 1984, 2(4), 317-323.
[http://dx.doi.org/[hhtp://10.1016/S0167-8140(84)80074-2] [PMID: 6395213]
[4]
Weichselbaum, R.R.; Little, J.B. Radioresistance in some human tumor cells conferred in vitro by repair of potentially lethal X-ray damage. Radiology, 1982, 145(2), 511-513.
[http://dx.doi.org/[hhtp://10.1148/radiology.145.2.7134460] [PMID: 7134460]
[5]
Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist; Lippincott Williams & Wilkins Philadelphia, 2006.
[6]
Henner, W.D.; Grunberg, S.M.; Haseltine, W.A. Sites and structure of gamma radiation-induced DNA strand breaks. J. Biol. Chem., 1982, 257(19), 11750-11754.
[PMID: 7118909]
[7]
Fix, D. The effect of radiation on myofiber properties in mouse skeletal muscle; University of South Carolina, 2013.
[8]
Gulati, A.K. The effect of X-irradiation on skeletal muscle regeneration in the adult rat. J. Neurol. Sci., 1987, 78(1), 111-120.
[http://dx.doi.org/[hhtp://10.1016/0022-510X(87)90083-9] [PMID: 3572447]
[9]
Rosenblatt, J.D.; Parry, D.J. Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J. Appl. Physiol., 1992, 73(6), 2538-2543.
[http://dx.doi.org/[hhtp://10.1152/jappl.1992.73.6.2538] [PMID: 1490967]
[10]
Rosenblatt, J.D.; Parry, D.J. Adaptation of rat extensor digitorum longus muscle to gamma irradiation and overload. Pflugers Arch., 1993, 423(3-4), 255-264.
[http://dx.doi.org/[hhtp://10.1007/BF00374404] [PMID: 8321629]
[11]
Rosenblatt, J.D.; Yong, D.; Parry, D.J. Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve, 1994, 17(6), 608-613.
[http://dx.doi.org/[hhtp://10.1002/mus.880170607] [PMID: 8196703]
[12]
Khan, M.Y. Radiation-induced changes in skeletal muscle. An electron microscopic study. J. Neuropathol. Exp. Neurol., 1974, 33(1), 42-57.
[http://dx.doi.org/[hhtp://10.1097/00005072-197401000-00004] [PMID: 4812324]
[13]
Lewis, R.B. Changes in striated muscle following single intense doses of x-rays. Lab. Invest., 1954, 3(1), 48-55.
[PMID: 13131820]
[14]
Bergström, R.; Salmi, A. Radiation-induced damage in the ultrastructure of striated muscle. Experiment cell Res, 1962, 26(1), 226- 228.
[15]
Darden, E.B., Jr Changes in membrane potentials, K content, and fiber structure in irradiated frog sartorius muscle. Am. J. Physiol., 1960, 198(4), 709-714.
[http://dx.doi.org/[hhtp://10.1152/ajplegacy.1960.198.4.709] [PMID: 13814086]
[16]
Wernig, A.; Zweyer, M.; Irintchev, A. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles. J. Physiol., 2000, 522(Pt 2), 333-345.
[http://dx.doi.org/[hhtp://10.1111/j.1469-7793.2000.t01-2-00333.x] [PMID: 10639108]
[17]
Shirazi, A.; Hadadi, G.H.; Ghazi, K.M.; Abou, A.F.; Mahdavi, S.R.; Eshraghian, M. Evaluation of melatonin for prevention of radiation myelopathy in irradiated cervical spinal cord, 2009.
[18]
Chevion, S.; Or, R.; Berry, E.M. The antioxidant status of patients subjected to total body irradiation. Biochem. Mol. Biol. Int., 1999, 47(6), 1019-1027.
[PMID: 10410248]
[19]
Taysi, S.; Uslu, C.; Akcay, F.; Sutbeyaz, M.Y. Malondialdehyde and nitric oxide levels in the plasma of patients with advanced laryngeal cancer. Surg. Today, 2003, 33(9), 651-654.
[http://dx.doi.org/[hhtp://10.1007/s00595-002-2562-3] [PMID: 12928839]
[20]
Hui, Z.; Naikun, Z.; Rong, Z.; Xiumin, L.; Huifang, C. Effect of ionizing radiation on bio-oxidase activities in cytoplasm of mouse blood and liver cells. Chinese Journal of Radiological Medicine and Protection, 1996, 16(3), 179-182.
[21]
Hardeland, R. Atioxidative protection by melatonin. Endocrine, 2005, 27(2), 119-130.
[http://dx.doi.org/[hhtp://10.1385/ENDO:27:2:119] [PMID: 16217125]
[22]
Yilmaz, S.; Atessahin, A.; Sahna, E.; Karahan, I.; Ozer, S. Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology, 2006, 218(2-3), 164-171.
[http://dx.doi.org/[hhtp://10.1016/j.tox.2005.10.015] [PMID: 16325981]
[23]
Baydas, G.; Gursu, M.F.; Yilmaz, S.; Canpolat, S.; Yasar, A.; Cikim, G.; Canatan, H. Daily rhythm of glutathione peroxidase activity, lipid peroxidation and glutathione levels in tissues of pinealectomized rats. Neurosci. Lett., 2002, 323(3), 195-198.
[http://dx.doi.org/[hhtp://10.1016/S0304-3940(02)00144-1] [PMID: 11959418]
[24]
Allegra, M.; Reiter, R.J.; Tan, D.X.; Gentile, C.; Tesoriere, L.; Livrea, M.A. The chemistry of melatonin’s interaction with reactive species. J. Pineal Res., 2003, 34(1), 1-10.
[http://dx.doi.org/[hhtp://10.1034/j.1600-079X.2003.02112.x] [PMID: 12485365]
[25]
Reiter, R.J. Interactions of the pineal hormone melatonin with oxygen-centered free radicals: a brief review. Braz. J. Med. Biol. Res., 1993, 26(11), 1141-1155.
[PMID: 8136717]
[26]
Evans, G.R.; Brandt, K.; Ang, K.K.; Cromeens, D.; Peden, E.; Gherardini, G.; Gurlek, A.; Tinkey, P.; Williams, J. Peripheral nerve regeneration: the effects of postoperative irradiation. Plast. Reconstr. Surg., 1997, 100(2), 375-380.
[http://dx.doi.org/[hhtp://10.1097/00006534-199708000-00015] [PMID: 9252604]
[27]
El-Missiry, M.A.; Fayed, T.A.; El-Sawy, M.R.; El-Sayed, A.A. Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol. Environ. Saf., 2007, 66(2), 278-286.
[http://dx.doi.org/[hhtp://10.1016/j.ecoenv.2006.03.008] [PMID: 16793135]
[28]
Zencirci, S.G.; Bilgin, M.D.; Yaraneri, H. Electrophysiological and theoretical analysis of melatonin in peripheral nerve crush injury. J. Neurosci. Methods, 2010, 191(2), 277-282.
[http://dx.doi.org/[hhtp://10.1016/j.jneumeth.2010.07.008] [PMID: 20637233]
[29]
Ohrnell, L.O.; Brånemark, R.; Nyman, J.; Nilsson, P.; Thomsen, P. Effects of irradiation on the biomechanics of osseointegration. An experimental in vivo study in rats. Scand. J. Plast. Reconstr. Surg. Hand Surg., 1997, 31(4), 281-293.
[http://dx.doi.org/[hhtp://10.3109/02844319709008974] [PMID: 9444704]
[30]
Shirazi, A.; Haddadi, G.; Minaee, B.; Sepehrizadeh, Z.; Mahdavi, S.; Jaberi, E.; Haddadi, M. Evaluation of melatonin for modulation of apoptosis-related genes in irradiated cervical spinal cord. Int. J. Low Radiat., 2010, 7(6), 436-445.
[http://dx.doi.org/[hhtp://10.1504/IJLR.2010.037665]
[31]
Almirtah, D.; Najafi, M.; Musa, A.; Keshavarz, M.; Shirazi, A.; Hassanzadeh, G.; Hadian Rasanani, D.M-R.; Samandari, H. Biochemical and histopathological evaluation of the radioprotective effects of melatonin against Gamma ray-induced skin damage in rats. Curr. Radiopharm., 2018, [Epub ahead of print].
[http://dx.doi.org/[hhtp://10.2174/1874471012666181120163250]
[32]
Atik, B.; Erkutlu, I.; Tercan, M.; Buyukhatipoglu, H.; Bekerecioglu, M.; Pence, S. The effects of exogenous melatonin on peripheral nerve regeneration and collagen formation in rats. J. Surg. Res., 2011, 166(2), 330-336.
[http://dx.doi.org/[hhtp://10.1016/j.jss.2009.06.002] [PMID: 20006352]
[33]
Ek, R.O.; Zencirci, S.G.; Dost, T.; Birincioglu, M.; Bilgin, M.D. Effects of melatonin supplementary on the sciatic nerve conduction velocity in the ovariectomized-aged rat. Neuroendocrinol. Lett., 2007, 28(5), 666-670.
[PMID: 17984941]
[34]
Hendy, A.; Abdel-Mohsen Allam, M.; Abdel-Khalek, A-H. ZAYED, E.; ABDEL-RAZEK, S.; EL-MELEGY, N.; MANDOUR, A.-S., Split Gastrocnemius Muscle Flap. Egypt J Plast Reconstr Surg, 2003, 27, 181-187.
[35]
Navarro, J.; Obrador, E.; Pellicer, J.A.; Aseni, M.; Viña, J.; Estrela, J.M. Blood glutathione as an index of radiation-induced oxidative stress in mice and humans. Free Radic. Biol. Med., 1997, 22(7), 1203-1209.
[http://dx.doi.org/[hhtp://10.1016/S0891-5849(96)00554-0] [PMID: 9098094]
[36]
Schaue, D.; Marples, B.; Trott, K.R. The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages. Int. J. Radiat. Biol., 2002, 78(7), 567-576.
[http://dx.doi.org/[hhtp://10.1080/09553000210126457] [PMID: 12079535]
[37]
Xu, H.; Yan, Y.; Li, L.; Peng, S.; Qu, T.; Wang, B. Ultraviolet B-induced apoptosis of human skin fibroblasts involves activation of caspase-8 and -3 with increased expression of vimentin. Photodermatol. Photoimmunol. Photomed., 2010, 26(4), 198-204.
[http://dx.doi.org/[hhtp://10.1111/j.1600-0781.2010.00522.x] [PMID: 20626822]
[38]
Shechmeister, I.L.; Fishman, M. The effect of ionizing radiation on phagocytosis and the bactericidal power of the blood. I. The effect of radiation on migration of leucocytes. J. Exp. Med., 1955, 101(3), 259-274.
[http://dx.doi.org/[hhtp://10.1084/jem.101.3.259] [PMID: 13233451]
[39]
Prasad, K.N. Handbook of radiobiology; CRC press, 1995.
[40]
Olivé, M.; Blanco, R.; Rivera, R.; Cinos, C.; Ferrer, I. Cell death induced by gamma irradiation of developing skeletal muscle. J. Anat., 1995, 187(Pt 1), 127-132.
[PMID: 7591973]
[41]
Whittemore, L-A.; Song, K.; Li, X.; Aghajanian, J.; Davies, M.; Girgenrath, S.; Hill, J.J.; Jalenak, M.; Kelley, P.; Knight, A.; Maylor, R.; O’Hara, D.; Pearson, A.; Quazi, A.; Ryerson, S.; Tan, X.Y.; Tomkinson, K.N.; Veldman, G.M.; Widom, A.; Wright, J.F.; Wudyka, S.; Zhao, L.; Wolfman, N.M. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun., 2003, 300(4), 965-971.
[http://dx.doi.org/[hhtp://10.1016/S0006-291X(02)02953-4] [PMID: 12559968]
[42]
Schwenen, M.; Altman, K.I.; Schröder, W. Radiation-induced increase in the release of amino acids by isolated, perfused skeletal muscle. Int. J. Radiat. Biol., 1989, 55(2), 257-269.
[http://dx.doi.org/[hhtp://10.1080/09553008914550291] [PMID: 2563398]
[43]
Powers, B.E.; Gillette, E.L.; Gillette, S.L.; LeCouteur, R.A.; Withrow, S.J. Muscle injury following experimental intraoperative irradiation. Int. J. Radiat. Oncol. Biol. Phys., 1991, 20(3), 463-471.
[http://dx.doi.org/[hhtp://10.1016/0360-3016(91)90058-C] [PMID: 1995532]
[44]
Bower, J.E.; Ganz, P.A.; Irwin, M.R.; Kwan, L.; Breen, E.C.; Cole, S.W. Inflammation and behavioral symptoms after breast cancer treatment: Do fatigue, depression, and sleep disturbance share a common underlying mechanism? J. Clin. Oncol., 2011, 29(26), 3517-3522.
[http://dx.doi.org/[hhtp://10.1200/JCO.2011.36.1154] [PMID: 21825266]
[45]
Georgakilas, A.G. Role of the immune system and inflammation in ionizing radiation effects. Cancer Lett., 2015, 368(2), 154-155.
[http://dx.doi.org/[hhtp://10.1016/j.canlet.2015.07.021] [PMID: 26215652]
[46]
Soska, V.; Olsovsky, J.; Zechmeister, A.; Lojek, A.; Bouda, J.; García-Escamilla, R. Free oxygen radicals and lipoperoxides in type II (non-insulin-dependent) diabetic patients. Rev. Mex. Patol. Clin, 1997, 44, 62-66.
[47]
Jeon, S-M.; Bok, S-H.; Jang, M-K.; Kim, Y-H.; Nam, K-T.; Jeong, T-S.; Park, Y.B.; Choi, M-S. Comparison of antioxidant effects of naringin and probucol in cholesterol-fed rabbits. Clin. Chim. Acta, 2002, 317(1-2), 181-190.
[http://dx.doi.org/[hhtp://10.1016/S0009-8981(01)00778-1] [PMID: 11814474]
[48]
Uma Devi, P.; Ganasoundari, A.; Vrinda, B.; Srinivasan, K.K.; Unnikrishnan, M.K. Radiation protection by the ocimum flavonoids orientin and vicenin: Mechanisms of action. Radiat. Res, 2000, 154(4), 455-460.
[http://dx.doi.org/10.1667/0033-7587(2000)154[0455:RPBTOF]2.0.CO;2]] [PMID: 11023610]
[49]
Chandra Jagetia, G.; Rajanikant, G.K.; Rao, S.K.; Shrinath Baliga, M. Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated γ radiation. Clin. Chim. Acta, 2003, 332(1-2), 111-121.
[http://dx.doi.org/[hhtp://10.1016/S0009-8981(03)00132-3] [PMID: 12763288]
[50]
Ataee, R.; Shokrzadeh, M.; Jafari-Sabet, M.; Nasrabadi Nasri, N.; Ataie, A.; Haghi Aminjan, H. The Role of Melatonin and Melatonin Receptors in Pharmacology and Pharmacotherapy of Cancer. Austin Oncol, 2017, 2(1), 1015.
[51]
Goradel, N.H.; Asghari, M.H.; Moloudizargari, M.; Negahdari, B.; Haghi-Aminjan, H.; Abdollahi, M. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol. Appl. Pharmacol., 2017, 335, 56-63.
[http://dx.doi.org/[hhtp://10.1016/j.taap.2017.09.022] [PMID: 28974455]
[52]
Haghi-Aminjan, H.; Asghari, M.H.; Farhood, B.; Rahimifard, M.; Hashemi Goradel, N.; Abdollahi, M. The role of melatonin on chemotherapy-induced reproductive toxicity. J. Pharm. Pharmacol., 2018, 70(3), 291-306.
[http://dx.doi.org/[hhtp://10.1111/jphp.12855] [PMID: 29168173]
[53]
Haghi-Aminjan, H.; Farhood, B.; Rahimifard, M.; Didari, T.; Baeeri, M.; Hassani, S.; Hosseini, R.; Abdollahi, M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: A systematic review of non-clinical studies. Expert Opin. Drug Metab. Toxicol., 2018, 14(9), 937-950.
[http://dx.doi.org/[hhtp://10.1080/17425255.2018.1513492] [PMID: 30118646]
[54]
Okatani, Y.; Wakatsuki, A.; Shinohara, K.; Kaneda, C.; Fukaya, T. Melatonin stimulates glutathione peroxidase activity in human chorion. J. Pineal Res., 2001, 30(4), 199-205.
[http://dx.doi.org/[hhtp://10.1034/j.1600-079X.2001.300402.x] [PMID: 11339508]
[55]
Taysi, S.; Koc, M.; Büyükokuroğlu, M.E.; Altinkaynak, K.; Şahin, Y.N. Melatonin reduces lipid peroxidation and nitric oxide during irradiation-induced oxidative injury in the rat liver. J. Pineal Res., 2003, 34(3), 173-177.
[http://dx.doi.org/[hhtp://10.1034/j.1600-079X.2003.00024.x] [PMID: 12614476]
[56]
Shabeeb, D.; Najafi, M.; Hasanzadeh, G.; Hadian, M.R.; Musa, A.E.; Shirazi, A. Electrophysiological measurements of diabetic peripheral neuropathy: A systematic review. Diabetes Metab. Syndr., 2018, 12(4), 591-600.
[http://dx.doi.org/[hhtp://10.1016/j.dsx.2018.03.026] [PMID: 29610062]
[57]
Zeman, W.; Ordy, J.M.; Samorajski, T. Modification of acute radiation effect on cerebellar neurons of mice by actinomycin D. Exp. Neurol., 1968, 21(1), 52-57.
[http://dx.doi.org/[hhtp://10.1016/0014-4886(68)90033-2] [PMID: 5675322]
[58]
Jurdana, M. Radiation effects on skeletal muscle. Radiol. Oncol., 2008, 42(1), 15-22.
[http://dx.doi.org/[hhtp://10.2478/v10019-007-0034-5]
[59]
Gangloff, H. O.Advances in biological and medical physics, Elsevier. 1965, vol, 10, pp. 1-90.
[60]
Farhood, B.; Goradel, N.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Shabeeb, D.; Musa, A. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin. Transl. Oncol., 2018, 1-12.
[PMID: 30136132]
[61]
Shabeeb, D.; Najafi, M.; Kashavarz, M.; Hasanzadeh, G.; Hadian, M.R.; Shirazi, A.; Shirazi, A. Recent finding in repair of the peripheral nerve lesions using pharmacological agents; common methods for evaluating the repair process. Cent. Nerv. Syst. Agents Med. Chem., 2018, 18(3), 161-172.
[http://dx.doi.org/[hhtp://10.2174/1871524918666180830101953] [PMID: 30160219]
[62]
Gitto, E.; Reiter, R.J.; Amodio, A.; Romeo, C.; Cuzzocrea, E.; Sabatino, G.; Buonocore, G.; Cordaro, V.; Trimarchi, G.; Barberi, I. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J. Pineal Res., 2004, 36(4), 250-255.
[http://dx.doi.org/[hhtp://10.1111/j.1600-079X.2004.00124.x] [PMID: 15066049]
[63]
Sack, R.L.; Lewy, A.J.; Hughes, R.J. Use of melatonin for sleep and circadian rhythm disorders. Ann. Med., 1998, 30(1), 115-121.
[http://dx.doi.org/[hhtp://10.3109/07853899808999393] [PMID: 9556098]
[64]
Brzezinski, A. Melatonin in humans. N. Engl. J. Med., 1997, 336(3), 186-195.
[http://dx.doi.org/[hhtp://10.1056/NEJM199701163360306] [PMID: 8988899]
[65]
Vaughan, G.M.; Mason, A.D., Jr; Reiter, R.J. Serum melatonin after a single aqueous subcutaneous injection in Syrian hamsters. Neuroendocrinology, 1986, 42(2), 124-127.
[http://dx.doi.org/10.1159/000124262]] [PMID: 3951669]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 3
Year: 2019
Page: [247 - 255]
Pages: 9
DOI: 10.2174/1874471012666190219120329
Price: $65

Article Metrics

PDF: 34
HTML: 3