Different Cabergoline Effect on Metabolic and Anthropometric Parameters in Female Prolactinoma Patients Versus Idiopathic Hyperprolactinemia Patients

Author(s): Mohamed M. Aboelnaga*, Eman H. Eladawy, Maha M. Elshafei, Nahed Abdullah, Moustafa El. Shaer.

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 19 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Hyperprolactinemia can lead to weight gain, insulin resistance, abnormal glucose homeostasis and dyslipidemia. Reversibility of these changes after normalization of prolactin with dopamine agonists is still controversial and needs more clarification.

Objective: We aimed to: 1) evaluate and compare metabolic and anthropometric profile in female with newly diagnosed prolactin-secreting adenoma versus female idiopathic hyperprolactinemic patients; 2) compare the effects of one year cabergoline therapy on the metabolic profile and anthropometric parameters (by using visceral adiposity index as index for evaluation of adipose tissue dysfunction) in females with prolactinoma to female idiopathic hyperprolactinemic patients.

Patients and Methods: We enrolled 40 female patients with newly diagnosed prolactinoma and 40 female patients with idiopathic hyperprolactinemia, who were matched according to: age; weight; BMI; waist; and prolactin levels. We enrolled the participants in this study at the time of diagnosis before therapy and they were followed up for 12 months.

Results: Cabergoline therapy had significant favorable effects on metabolic and anthropometric parameters, visceral adiposity index and in all patients (apart from HDLc in prolactinoma patients).

Cabergoline therapy was significantly more effective in patient with idiopathic hyperprolactinemia than prolactinoma patients with regard to BMI, waist circumference, HDLc and visceral adiposity index despite normalization of prolactin levels in both groups.

Conclusion: 12 months of Cabergoline treatment improved most of the anthropometric and metabolic parameters, and visceral adiposity index as a marker for adipose tissue dysfunction in both idiopathic hyperprolactinemia and prolactinoma patients. However, Cabergoline treatment was more effective in idiopathic hyperprolactinemic than prolactinoma patients.

Keywords: Prolactinoma, hyperprolactinemia, idiopathic, cabergoline, VAI, female.

Krysiak, R.; Okopień, B. Hyperprolactinemia unrelated to prolactinoma. Wiad. Lek., 2014, 67(2 Pt 1), 101-111.
Ben-Jonathan, N.; Hugo, E.R.; Brandebourg, T.D.; LaPensee, C.R. Focus on prolactin as a metabolic hormone. Trends Endocrinol. Metab., 2006, 17(3), 110-116.
Donato, J., Jr; Frazão, R. Interactions between prolactin and kisspeptin to control reproduction. Arch. Endocrinol. Metab., 2016, 60(6), 587-595.
Schmid, C.; Goede, D.L.; Hauser, R.S.; Brändle, M. Increased prevalence of high Body Mass Index in patients presenting with pituitary tumours: severe obesity in patients with macroprolactinoma. Swiss Med. Wkly., 2006, 136(15-16), 254-258.
Brown, R.S.; Kokay, I.C.; Herbison, A.E.; Grattan, D.R. Distribution of prolactin-responsive neurons in the mouse forebrain. J. Comp. Neurol., 2010, 518(1), 92-102.
Pala, N.A.; Laway, B.A.; Misgar, R.A.; Shah, Z.A.; Gojwari, T.A.; Dar, T.A. Profile of leptin, adiponectin, and body fat in patients with hyperprolactinemia: Response to treatment with cabergoline. Indian J. Endocrinol. Metab., 2016, 20(2), 177-181.
Shibli-Rahhal, A.; Schlechte, J. The effects of hyperprolactinemia on bone and fat. Pituitary, 2009, 12(2), 96-104.
Doknic, M.; Pekic, S.; Zarkovic, M.; Medic-Stojanoska, M.; Dieguez, C.; Casanueva, F.; Popovic, V. Dopaminergic tone and obesity: an insight from prolactinomas treated with bromocriptine. Eur. J. Endocrinol., 2002, 147(1), 77-84.
Galluzzi, F.; Salti, R.; Stagi, S.; La Cauza, F.; Chiarelli, F. Reversible weight gain and prolactin levels--long-term follow-up in childhood. J. Pediatr. Endocrinol. Metab., 2005, 18(9), 921-924.
LaPensee, C.R.; Horseman, N.D.; Tso, P.; Brandebourg, T.D.; Hugo, E.R.; Ben-Jonathan, N. The prolactin-deficient mouse has an unaltered metabolic phenotype. Endocrinology, 2006, 147(10), 4638-4645.
dos Santos Silva, C.M.; Barbosa, F.R.; Lima, G.A.; Warszawski, L.; Fontes, R.; Domingues, R.C.; Gadelha, M.R. BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity (Silver Spring), 2011, 19(4), 800-805.
Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care, 2010, 33(4), 920-922.
Ludlam, W. Diagnosis and Treatment of Hyperprolactinemia: An Endocrine Society Clinical Practice Guideline. Yearbook of Endocrinology, 2011, 2011, 310-311.
Krysiak, R.; Okopien, B. Different effects of cabergoline and bromocriptine on metabolic and cardiovascular risk factors in patients with elevated prolactin levels. Basic Clin. Pharmacol. Toxicol., 2015, 116(3), 251-256.
Krysiak, R.; Okopien, B. Different effects of cabergoline and bromocriptine on metabolic and cardiovascular risk factors in patients with elevated prolactin levels. Basic Clin. Pharmacol. Toxicol., 2015, 116(3), 251-256.
Ciresi, A.; Amato, M.C.; Guarnotta, V.; Lo Castro, F.; Giordano, C. Higher doses of cabergoline further improve metabolic parameters in patients with prolactinoma regardless of the degree of reduction in prolactin levels. Clin. Endocrinol. (Oxf.), 2013, 79(6), 845-852.
Soran, H.; Wilding, J.; MacFarlane, I. Body weight and prolactinoma: a retrospective study. Int. J. Obes. Relat. Metab. Disord., 2004, 28(1), 183-183.
Atadzhanov, M. Dopamine D2 receptor and obesity. Lancet, 2001, 357(9271), 1883.
Naliato, E.C.O.; Violante, A.H.D.; Caldas, D.; Lamounier Filho, A.; Loureiro, C.R.; Fontes, R.; Schrank, Y.; Souza, R.G.; Costa, P.L.M.; Colao, A. Body fat in nonobese women with prolactinoma treated with dopamine agonists. Clin. Endocrinol. (Oxf.), 2007, 67(6), 845-852.
Nagaishi, V.S.; Cardinali, L.I.; Zampieri, T.T.; Furigo, I.C.; Metzger, M.; Donato, J., Jr Possible crosstalk between leptin and prolactin during pregnancy. Neuroscience, 2014, 259, 71-83.
Gualillo, O.; Lago, F.; García, M.; Menéndez, C.; Señarís, R.; Casanueva, F.F.; Diéguez, C. Prolactin stimulates leptin secretion by rat white adipose tissue. Endocrinology, 1999, 140(11), 5149-5153.
Baptista, T.; Lacruz, A.; de Mendoza, S.; Mendoza Guillén, J.M.; Silvera, R.; Angeles, F.; Mendoza, M.T.; Hernández, L. Body weight gain after administration of antipsychotic drugs: correlation with leptin, insulin and reproductive hormones. Pharmacopsychiatry, 2000, 33(3), 81-88.
Nilsson, L.; Binart, N.; Bohlooly-Y, M.; Bramnert, M.; Egecioglu, E.; Kindblom, J.; Kelly, P.A.; Kopchick, J.J.; Ormandy, C.J.; Ling, C.; Billig, H. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem. Biophys. Res. Commun., 2005, 331(4), 1120-1126.
Grattan, D.R.; Kokay, I.C. Prolactin: a pleiotropic neuroendocrine hormone. J. Neuroendocrinol., 2008, 20(6), 752-763.
Schmid, C.; Goede, D.L.; Hauser, R.S.; Brändle, M. Increased prevalence of high Body Mass Index in patients presenting with pituitary tumours: severe obesity in patients with macroprolactinoma. Swiss Med. Wkly., 2006, 136(15-16), 254-258.
Gibson, C.D.; Karmally, W.; McMahon, D.J.; Wardlaw, S.L.; Korner, J. Randomized pilot study of cabergoline, a dopamine receptor agonist: effects on body weight and glucose tolerance in obese adults. Diabetes Obes. Metab., 2012, 14(4), 335-340.
Saadat, N.; Esmaily, H.; Abbasinazari, M.; Tohidi, M.; Salamzadeh, J.; Hadaegh, F.; Tolabi, M.; Kalantar-Hormozi, M.; Dibaj, M. Does twice-weekly cabergoline improve anthropometrical and biochemical profiles in prediabetes? A randomized double-blind clinical trial pilot study. Iran. J. Pharm. Res., 2015, 14(Suppl.), 77-86.
Berinder, K.; Nyström, T.; Höybye, C.; Hall, K.; Hulting, A-L. Insulin sensitivity and lipid profile in prolactinoma patients before and after normalization of prolactin by dopamine agonist therapy. Pituitary, 2011, 14(3), 199-207.
Kamath, V.; Jones, C.N.; Yip, J.C.; Varasteh, B.B.; Cincotta, A.H.; Reaven, G.M.; Chen, Y-D.I. Effects of a quick-release form of bromocriptine (Ergoset) on fasting and postprandial plasma glucose, insulin, lipid, and lipoprotein concentrations in obese nondiabetic hyperinsulinemic women. Diabetes Care, 1997, 20(11), 1697-1701.
Meier, A.H.; Cincotta, A.H.; Lovell, W.C. Timed bromocriptine administration reduces body fat stores in obese subjects and hyperglycemia in type II diabetics. Experientia, 1992, 48(3), 248-253.
Via, M.A.; Chandra, H.; Araki, T.; Potenza, M.V.; Skamagas, M. Bromocriptine approved as the first medication to target dopamine activity to improve glycemic control in patients with type 2 diabetes. Diabetes Metab. Syndr. Obes., 2010, 3, 43-48.
Perić, B.; Kruljac, I.; Šundalić, S.; Pećina, H.I.; Jović, A.; Štefanović, M.; Butorac, D.; Vrkljan, M. Obesity and hypercholesterolemia in patients with prolactinomas: Could DHEA-S and growth hormone be the missing link? Endocr. Res., 2016, 41(3), 200-206.
Hattori, N. Macroprolactinemia: a new cause of hyperprolactinemia. J. Pharmacol. Sci., 2003, 92(3), 171-177.
Vilar, L.; Moura, E.; Canadas, V.; Gusmão, A.; Campos, R.; Leal, E.; Teixeira, L.; Santos, V.; Gomes, B.; Lima, M.; Paiva, R.; Albuquerque, J.L.; Egito, C.S.; Botelho, C.A.; Azevedo, M.; Casulari, L.A.; Naves, L.A. [Prevalence of macroprolactinemia among 115 patients with hyperprolactinemia]. Arq. Bras. Endocrinol. Metabol, 2007, 51(1), 86-91.
Kasum, M.; Oreskovic, S.; Zec, I.; Jezek, D.; Tomic, V.; Gall, V.; Adzic, G. Macroprolactinemia: new insights in hyperprolactinemia. Biochem. Med. (Zagreb), 2012, 22(2), 171-179.
Guerra, E.; Rubino, M.; Di Sarno, A.; Vuolo, L.; Contaldi, P.; Scarano, E. Evaluation of bone mass and fracture in patients with prolactinoma. Endocrine Abstracts, 2012, 29, 1484.
Aboelnaga, M.M.; Abdullah, N.; El Shaer, M. 25-hydroxyvitamin D Correlation with Prolactin Levels and Adenoma Size in Female Patients with Newly Diagnosed Prolactin Secreting Adenoma. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(3), 219-225.
Halupczok-Żyła, J.; Jawiarczyk-Przybyłowska, A.; Bolanowski, M. Patients with active acromegaly are at high risk of 25(OH)D deficiency. Front. Endocrinol. (Lausanne), 2015, 6, 89.
Bonadonna, S.; Mazziotti, G.; Nuzzo, M.; Bianchi, A.; Fusco, A.; De Marinis, L.; Giustina, A. Increased prevalence of radiological spinal deformities in active acromegaly: Aa cross-sectional study in postmenopausal women. J. Bone Miner. Res., 2005, 20(10), 1837-1844.
Krysiak, R.; Kowalska, B.; Szkróbka, W.; Okopień, B. The association between macroprolactin levels and vitamin D status in premenopausal women with macroprolactinemia: a pilot study. Exp. Clin. Endocrinol. Diabetes, 2015, 123(8), 446-450.
Jang, H.B.; Lee, H-J.; Park, J.Y.; Kang, J-H.; Song, J. Association between serum vitamin d and metabolic risk factors in korean schoolgirls. Osong Public Health Res. Perspect., 2013, 4(4), 179-186.
Vanlint, S. Vitamin D and obesity. Nutrients, 2013, 5(3), 949-956.
Rock, C.L.; Emond, J.A.; Flatt, S.W.; Heath, D.D.; Karanja, N.; Pakiz, B.; Sherwood, N.E.; Thomson, C.A. Weight loss is associated with increased serum 25-hydroxyvitamin D in overweight or obese women. Obesity (Silver Spring), 2012, 20(11), 2296-2301.
Abrahamian, H.; Kautzky-Willer, A. Sexuality in overweight and obesity. Wien. Med. Wochenschr., 2016, 166(3-4), 121-128.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [511 - 518]
Pages: 8
DOI: 10.2174/1871530319666190219103812
Price: $65

Article Metrics

PDF: 20