Macrophages in Bone Homeostasis

Author(s): Lingbo Kong*, Youhan Wang, Wanli Smith, Dingjun Hao.

Journal Name: Current Stem Cell Research & Therapy

Volume 14 , Issue 6 , 2019

Become EABM
Become Reviewer

Abstract:

Aberrant or prolonged immune responses has been proved to be involved in bone homeostasis. As a component of the innate immune system, macrophages play a critical role in bone homeostasis. Conventionally, according to response to the various panel of stimuli, macrophages can be plastically classified into two major phenotypes: M1 and M2. M1 macrophages are generally proinflammatory, whereas M2 are anti-inflammatory. Although studies demonstrated that both M1 and M2 phenotypes have been implicated in various inflammatory bone diseases, their direct role in bone homeostasis remains unclear. Thus, in this review, we briefly discuss the term “osteoimmunology”, which deals with the crosstalk and shared mechanisms of the bone and immune systems. In addition, we overview M1 and M2 macrophages for their role in osteoclastogenesis and osteogenesis as well as relevant signaling cascades involved.

Keywords: Bone homeostasis, macrophages, osteoimmunology, TNF-α, naive macrophages, immune system.

[1]
Allison SJ, Baldock PA, Enriquez RF, et al. Critical interplay between neuropeptide Y and sex steroid pathways in bone and adipose tissue homeostasis. J Bone Miner Res 2009; 24(2): 294-304.
[2]
Carmeliet G, Vico L, Bouillon R. Space flight: A challenge for normal bone homeostasis. Crit Rev Eukaryot Gene Expr 2001; 11(1-3): 131-44.
[3]
Dirckx N, Van Hul M, Maes C. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C Embryo Today 2013; 99(3): 170-91.
[4]
Abumaree MH, Al Jumah MA, Kalionis B, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev 2013; 9(5): 620-41.
[5]
Gennari L, Nuti R, Bilezikian JP. Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab 2004; 89(12): 5898-907.
[6]
Joeng KS, Lee YC, Lim J, et al. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest 2017; 127(7): 2678-88.
[7]
Chen H, Senda T, Kubo KY. The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol 2015; 48(2): 61-8.
[8]
Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G. Macrophage polarisation: An immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One 2013; 8(11): e80908.
[9]
Bianco G, Russo R, Marzocco S, Velotto S, Autore G, Severino L. Modulation of macrophage activity by aflatoxins B1 and B2 and their metabolites aflatoxins M1 and M2. Toxicon 2012; 59(6): 644-50.
[10]
Lories RJ, Luyten FP. Bone morphogenetic protein signaling in joint homeostasis and disease. Cytokine Growth Factor Rev 2005; 16(3): 287-98.
[11]
Abe T, Shin J, Hosur K, Udey MC, Chavakis T, Hajishengallis G. Regulation of osteoclast homeostasis and inflammatory bone loss by MFG-E8. J Immunol 2014; 193(3): 1383-91.
[12]
Takayanagi H, Iizuka H, Juji T, et al. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 2000; 43(2): 259-69.
[13]
Feng W, Xia W, Ye Q, Wu W. Osteoclastogenesis and osteoimmunology. Front Biosci(Landmark Ed) 2014; 19: 758-67.
[14]
Han YK, Jin Y, Miao YB, Shi T, Lin XP. CD8(+) Foxp3(+) T cells affect alveolar bone homeostasis via modulating tregs/th17 during induced periodontitis: An adoptive transfer experiment. Inflammation 2018; 41(5): 1791-803.
[15]
DuSell CD, Nelson ER, Wang X, et al. The endogenous selective estrogen receptor modulator 27-hydroxycholesterol is a negative regulator of bone homeostasis. Endocrinology 2010; 151(8): 3675-85.
[16]
Caetano-Lopes J, Canhao H, Fonseca JE. Osteoimmunology--the hidden immune regulation of bone. Autoimmun Rev 2009; 8(3): 250-5.
[17]
Sima C, Glogauer M. Macrophage subsets and osteoimmunology: tuning of the immunological recognition and effector systems that maintain alveolar bone. Periodontol 2000 2013; 63(1): 80-101.
[18]
Matsuo K, Ray N. Osteoclasts, mononuclear phagocytes, and c-Fos: new insight into osteoimmunology. Keio J Med 2004; 53(2): 78-84.
[19]
Bozec A, Soulat D. Latest perspectives on macrophages in bone homeostasis. Pflugers Arch 2017; 469(3-4): 517-25.
[20]
Vi L, Baht GS, Whetstone H, et al. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res 2015; 30(6): 1090-102.
[21]
Wei J, Besner GE. M1 to M2 macrophage polarization in heparin-binding epidermal growth factor-like growth factor therapy for necrotizing enterocolitis. J Surg Res 2015; 197(1): 126-38.
[22]
Hasan D, Chalouhi N, Jabbour P, Hashimoto T. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: Preliminary results. J Neuroinflammation 2012; 9: 222.
[23]
de Gaetano M, Crean D, Barry M, Belton O. M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis. Front Immunol 2016; 7: 275.
[24]
Kaur S, Raggatt LJ, Batoon L, Hume DA, Levesque JP, Pettit AR. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Semin Cell Dev Biol 2017; 61: 12-21.
[25]
Mauro A, Russo V, Di Marcantonio L, et al. M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine. Res Vet Sci 2016; 105: 92-102.
[26]
Chylikova J, Dvorackova J, Tauber Z, Kamarad V. M1/M2 macrophage polarization in human obese adipose tissue. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162(2): 79-82.
[27]
Yang Y, Qin J, Lan L, et al. M-CSF cooperating with NFkappaB induces macrophage transformation from M1 to M2 by upregulating c-Jun. Cancer Biol Ther 2014; 15(1): 99-107.
[28]
da Rocha RF, De Bastiani MA, Klamt F. Bioinformatics approach to evaluate differential gene expression of M1/M2 macrophage phenotypes and antioxidant genes in atherosclerosis. Cell Biochem Biophys 2014; 70(2): 831-9.
[29]
Bardi GT, Smith MA, Hood JL. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine 2018; 105: 63-72.
[30]
Hood JL. Melanoma exosome induction of endothelial cell GM-CSF in pre-metastatic lymph nodes may result in different M1 and M2 macrophage mediated angiogenic processes. Med Hypotheses 2016; 94: 118-22.
[31]
Jeganathan S, Fiorino C, Naik U, Sun HS, Harrison RE. Modulation of osteoclastogenesis with macrophage M1- and M2-inducing stimuli. PLoS One 2014; 9(8): e104498.
[32]
Bayoumy M, Sankar U, Muthusamy N. Role of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis of bone marrow derived stem cells. Indian J Exp Biol 2002; 40(9): 995-1000.
[33]
Kawanishi N, Yano H, Yokogawa Y, Suzuki K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev 2010; 16: 105-18.
[34]
Ren F, Fan M, Mei J, et al. Interferon-gamma and celecoxib inhibit lung-tumor growth through modulating M2/M1 macrophage ratio in the tumor microenvironment. Drug Des Devel Ther 2014; 8: 1527-38.
[35]
Qin M, Wang L, Li F, et al. Oxidized LDL activated eosinophil polarize macrophage phenotype from M2 to M1 through activation of CD36 scavenger receptor. Atherosclerosis 2017; 263: 82-91.
[36]
Chen S, Lu Z, Wang F, Wang Y. Cathelicidin-WA polarizes E. coli K88-induced M1 macrophage to M2-like macrophage in RAW264.7 cells. Int Immunopharmacol 2018; 54: 52-9.
[37]
Zhang X, Zhou M, Guo Y, Song Z, Liu B. 1,25-Dihydroxyvitamin D(3) Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARgamma Signaling Pathway. Biomed Res Int 2015; 2015: 157834.
[38]
Ye Y, Xu Y, Lai Y, et al. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization. J Cell Biochem 2018; 119(3): 2951-63.
[39]
Amend SR, Uluckan O, Hurchla M, et al. Thrombospondin-1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts. J Bone Miner Res 2015; 30(1): 106-15.
[40]
Reactive oxygen species and their impact on bone homeostasis. Bonekey Rep 2013; 2: 431.
[41]
Mrakovcic L, Wildburger R, Jaganjac M, et al. Lipid peroxidation product 4-hydroxynonenal as factor of oxidative homeostasis supporting bone regeneration with bioactive glasses. Acta Biochim Pol 2010; 57(2): 173-8.
[42]
Zheng XF, Hong YX, Feng GJ, et al. Lipopolysaccharide-induced M2 to M1 macrophage transformation for IL-12p70 production is blocked by Candida albicans mediated up-regulation of EBI3 expression. PLoS One 2013; 8(5): e63967.
[43]
Bakiri L, Reschke MO, Gefroh HA, et al. Functions of Fos phosphorylation in bone homeostasis, cytokine response and tumourigenesis. Oncogene 2011; 30(13): 1506-17.
[44]
Kodar K, Harper JL, McConnell MJ, Timmer MSM, Stocker BL. The Mincle ligand trehalose dibehenate differentially modulates M1-like and M2-like macrophage phenotype and function via Syk signaling. Immun Inflamm Dis 2017; 5(4): 503-14.
[45]
Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 2013; 34(18): 4439-51.
[46]
Anderson GJ. Things that go BMP in the liver: Bone morphogenetic protein 6 and the control of body iron homeostasis. Hepatology 2009; 50(1): 316-9.
[47]
Lu H, Wu L, Liu L, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem Pharmacol 2018; 154: 203-12.
[48]
Yamamoto-Oka H, Mizuguchi S, Toda M, et al. Carbon monoxide-releasing molecule, CORM-3, modulates alveolar macrophage M1/M2 phenotype in vitro. Inflammopharmacology 2018; 26(2): 435-45.
[49]
Ding N, Wang Y, Dou C, et al. Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway. J Cell Physiol 2019; 234(6): 8788-96.
[50]
Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology 2018; 223(1): 101-11.
[51]
Refai A, Gritli S, Barbouche MR, Essafi M. Mycobacterium tuberculosis virulent factor ESAT-6 drives macrophage differentiation toward the pro-inflammatory M1 phenotype and subsequently switches it to the anti-inflammatory M2 phenotype. Front Cell Infect Microbiol 2018; 8: 327.
[52]
Fang S, Xu Y, Zhang Y, et al. Irgm1 promotes M1 but not M2 macrophage polarization in atherosclerosis pathogenesis and development. Atherosclerosis 2016; 251: 282-90.
[53]
Ma S, Liu M, Xu Z, et al. A double feedback loop mediated by microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus regulates cancer progression. Oncotarget 2016; 7(12): 13502-19.
[54]
Famenini S, Rigali EA, Olivera-Perez HM, et al. Increased intermediate M1-M2 macrophage polarization and improved cognition in mild cognitive impairment patients on omega-3 supplementation. FASEB J 2017; 31(1): 148-60.
[55]
Batoon L, Millard SM, Raggatt LJ, Pettit AR. Osteomacs and Bone Regeneration. Curr Osteoporos Rep 2017; 15(4): 385-95.
[56]
Millard SM, Pettit AR, Ellis R, et al. Intrauterine bone marrow transplantation in osteogenesis imperfecta mice yields donor osteoclasts and osteomacs but not osteoblasts. Stem Cell Reports 2015; 5(5): 682-9.
[57]
Mohamad SF, Xu L, Ghosh J, et al. Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function. Blood Adv 2017; 1(26): 2520-8.
[58]
Choi JW, Kwon MJ, Kim IH, Kim YM, Lee MK, Nam TJ. Pyropia yezoensis glycoprotein promotes the M1 to M2 macrophage phenotypic switch via the STAT3 and STAT6 transcription factors. Int J Mol Med 2016; 38(2): 666-74.
[59]
Saha B, Bala S, Hosseini N, Kodys K, Szabo G. Kruppel-like factor 4 is a transcriptional regulator of M1/M2 macrophage polarization in alcoholic liver disease. J Leukoc Biol 2015; 97(5): 963-73.
[60]
Schinke T, Schilling AF, Baranowsky A, et al. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med 2009; 15(6): 674-81.
[61]
David JP. Osteoimmunology: A view from the bone. Adv Immunol 2007; 95: 149-65.
[62]
Hamers AA, Argmann C, Moerland PD, et al. Nur77-deficiency in bone marrow-derived macrophages modulates inflammatory responses, extracellular matrix homeostasis, phagocytosis and tolerance. BMC Genomics 2016; 17: 162.
[63]
Sims NA, Quinn JM. Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease. Bonekey Rep 2014; 3: 527.
[64]
Hong G, Kuek V, Shi J, et al. EGFL7: Master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol 2018; 233(11): 8526-37.
[65]
Zhang Q, Atsuta I, Liu S, et al. IL-17-mediated M1/M2 macrophage alteration contributes to pathogenesis of bisphosphonate-related osteonecrosis of the jaws. Clin Cancer Res 2013; 19(12): 3176-88.
[66]
Stegen S, van Gastel N, Eelen G, et al. HIF-1alpha promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab 2016; 23(2): 265-79.
[67]
Sun Y, Kuek V, Qiu H, et al. The emerging role of NPNT in tissue injury repair and bone homeostasis. J Cell Physiol 2018; 233(3): 1887-94.
[68]
He D, Kou X, Luo Q, et al. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J Dent Res 2015; 94(1): 129-39.
[69]
Dou C, Ding N, Zhao C, et al. Estrogen deficiency-mediated M2 macrophage osteoclastogenesis contributes to M1/M2 ratio alteration in ovariectomized osteoporotic mice. J Bone Miner Res 2018; 33(5): 899-908.
[70]
Herbert BA, Novince CM, Kirkwood KL. Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis. Mol Oral Microbiol 2016; 31(3): 207-27.
[71]
Li C, Ding XY, Xiang DM, et al. Enhanced M1 and impaired M2 macrophage polarization and reduced mitochondrial biogenesis via inhibition of amp kinase in chronic kidney Disease. Cell Physiol Biochem 2015; 36(1): 358-72.
[72]
Yamaguchi T, Movila A, Kataoka S, et al. Proinflammatory M1 Macrophages Inhibit RANKL-Induced Osteoclastogenesis. Infect Immun 2016; 84(10): 2802-12.
[73]
Mihai R. The calcium sensing receptor: From understanding parathyroid calcium homeostasis to bone metastases. Ann R Coll Surg Engl 2008; 90(4): 271-7.
[74]
Baud’huin M, Lamoureux F, Duplomb L, Redini F, Heymann D. RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci 2007; 64(18): 2334-50.
[75]
Kim HS, Nam ST, Mun SH, et al. DJ-1 controls bone homeostasis through the regulation of osteoclast differentiation. Nat Commun 2017; 8(1): 1519.
[76]
Fumoto T, Takeshita S, Ito M, Ikeda K. Physiological functions of osteoblast lineage and T cell-derived RANKL in bone homeostasis. J Bone Miner Res 2014; 29(4): 830-42.
[77]
Izawa T, Arakaki R, Mori H, et al. The nuclear receptor AhR controls bone homeostasis by regulating osteoclast differentiation via the RANK/c-Fos signaling axis. J Immunol 2016; 197(12): 4639-50.
[78]
Asagiri M, Sato K, Usami T, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 2005; 202(9): 1261-9.
[79]
Takayanagi H. Inflammatory bone destruction and osteoimmunology. J Periodontal Res 2005; 40(4): 287-93.
[80]
Lee Y, Ha J, Kim HJ, et al. Negative feedback Inhibition of NFATc1 by DYRK1A regulates bone homeostasis. J Biol Chem 2009; 284(48): 33343-51.
[81]
Zamani A, Decker C, Cremasco V, Hughes L, Novack DV, Faccio R. Diacylglycerol Kinase zeta (DGKzeta) is a critical regulator of bone homeostasis via modulation of c-Fos levels in osteoclasts. J Bone Miner Res 2015; 30(10): 1852-63.
[82]
Limmer A, Wirtz DC. Osteoimmunology: Influence of the immune system on bone regeneration and consumption. Z Orthop Unfall 2017; 155(3): 273-80.
[83]
Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010; 285(33): 25103-8.
[84]
Udagawa N, Takahashi N, Akatsu T, et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 1990; 87(18): 7260-4.
[85]
Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 2012; 22(1): 50-60.
[86]
Ishii M, Egen JG, Klauschen F, et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2009; 458(7237): 524-8.
[87]
Xiao L, Zhou Y, Zhu L, et al. SPHK1-S1PR1-RANKL axis regulates the interactions between macrophages and bmscs in inflammatory bone Loss. J Bone Miner Res 2018; 33(6): 1090-104.
[88]
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 2012; 8(3): 133-43.
[89]
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010; 32(5): 593-604.
[90]
Alexander KA, Chang MK, Maylin ER, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 2011; 26(7): 1517-32.
[91]
Morris DL. Minireview: Emerging concepts in islet macrophage biology in Type 2 diabetes. Mol Endocrinol 2015; 29(7): 946-62.
[92]
Kawao N, Tamura Y, Horiuchi Y, et al. The Tissue Fibrinolytic System Contributes to the Induction of Macrophage Function and CCL3 during Bone Repair in Mice. PLoS One 2015; 10(4): e0123982.
[93]
Kawao N, Tamura Y, Okumoto K, et al. Plasminogen plays a crucial role in bone repair. J Bone Miner Res 2013; 28(7): 1561-74.
[94]
Shimoide T, Kawao N, Tamura Y, et al. Role of macrophages and plasminogen activator inhibitor-1 in delayed bone repair in diabetic female mice. Endocrinology 2018; 159(4): 1875-85.
[95]
Strube P, Sentuerk U, Riha T, et al. Influence of age and mechanical stability on bone defect healing: age reverses mechanical effects. Bone 2008; 42(4): 758-64.
[96]
Linehan E, Fitzgerald DC. Ageing and the immune system: focus on macrophages. Eur J Microbiol Immunol (Bp) 2015; 5(1): 14-24.
[97]
Vi L, Baht GS, Soderblom EJ, et al. Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat Commun 2018; 9(1): 5191.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 6
Year: 2019
Page: [474 - 481]
Pages: 8
DOI: 10.2174/1574888X14666190214163815
Price: $58

Article Metrics

PDF: 25
HTML: 1