Recent Advances in the Chemistry of Doubly Activated Cyclopropanes: Synthesis and Reactivity

Author(s): Purushothaman Gopinath*, Srinivasan Chandrasekaran*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Diactivated cyclopropanes containing two geminal electron withdrawing groups, commonly called as ‘Doubly Activated Cyclopropanes’ are useful synthons for the synthesis of many interesting natural products and functionalized molecules. These geminal electron withdrawing groups (EWG’s) facilitate the regioselective ring opening of cyclopropanes by polarizing the C-C bond adjacent to it. This polarization also allows them to undergo 1,3 dipolar cycloaddition reactions when substituted with a suitable electron donor substituent at the adjacent carbon (donor-acceptor cyclopropanes) in the presence of suitable dipolarophiles. In this review, we discuss the recent advances in the chemistry of doubly activated cyclopropanes: their synthesis, reactions and applications in total synthesis.

Keywords: Cyclopropanes, ring-opening, cycloaddition, diazo compounds, iodonium ylides, heterocycles, carbocycles.

Thibodeaux, C.J.; Chang, W.C.; Liu, H.W. Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem. Rev., 2012, 112(3), 1681-1709.
Brackmann, F.; De Meijere, A. Natural occurrence, syntheses, and applications of cyclopropyl-group-containing α-amino acids. 1. 1-aminocyclo-propanecarboxylic acid and other 2,3-methanoamino acids. Chem. Rev., 2007, 107(11), 4493-4537.
Gnad, F.; Reiser, O. Synthesis and applications of β-aminocarboxylic acids containing a cyclopropane ring. Chem. Rev., 2003, 103(4), 1603-1624.
Kulinkovich, O.G. Cyclopropanes in organic synthesis; John Wiley & Sons, 2015.
Peter, K.; Andras, K.; Laszlo, H.; Gyorgy, K.; Csaba, S. Natural compounds containing a condensed cyclopropane ring. Natural and synthetic aspects. Curr. Org. Chem., 2014, 18(15), 2037-2042.
Celerier, J.P.; Haddad, M.; Jacoby, D.; Lhommet, G. Heterocyclization of primary amines with highly activated cyclopropanes: A new route to isoretronecanol. Tetrahedron Lett., 1987, 28(52), 6597-6600.
Denis, J.N.; Krief, A. Diphosphorus tetraiodide. A valuable reagent in cyclopropane chemistry. J. Chem. Soc. Chem. Commun., 1983, (5), 229-230.
Dieter, R.K.; Pounds, S. Ring opening reactions of electrophilic cyclopropanes. J. Org. Chem., 1982, 47(16), 3174-3177.
Miller, R.D.; McKean, D.R. Ring opening of cyclopropyl ketones by trimethylsilyl iodide. J. Org. Chem., 1981, 46(11), 2412-2414.
Truce, W.E.; Lindy, L.B. Cyclopropyl sulfones1. J. Org. Chem., 1961, 26(5), 1463-1467.
Lifchits, O.; Alberico, D.; Zakharian, I.; Charette, A.B. Nucleophilic addition of phenol derivatives to methyl 1-nitrocyclopropanecarboxylates. J. Org. Chem., 2008, 73(17), 6838-6840.
Zhang, Z.G.; Zhang, Q.; Sun, S.G.; Xiong, T.; Liu, Q. Domino ring-opening/recyclization reactions of doubly activated cyclopropanes as a strategy for the synthesis of furoquinoline derivatives. Angew. Chem. Int. Ed., 2007, 46(10), 1726-1729.
Budynina, E.M.; Ivanova, O.A.; Averina, E.B.; Kuznetsova, T.S.; Zefirov, N.S. Ring opening of 1,1-dinitrocyclopropane by addition of C, N, O and S nucleophiles. Tetrahedron Lett., 2006, 47(5), 647-649.
Krief, A. Novel syntheses of γ-selenobutyrates from germinally diactivated cyclopropane derivatives. Tetrahedron Lett., 1987, 28, 4225-4228.
Danishefsky, S.; McKee, R.; Singh, R.K. Kinetically controlled total syntheses of dl-trachelanthamidine and dl-isoretronecanol. J. Am. Chem. Soc., 1977, 99(14), 4783-4788.
Danishefsky, S.; McKee, R.; Singh, R.K. Stereospecific total synthesis of dl-hastanecine and dl-dihydroxyheliotridane. J. Am. Chem. Soc., 1977, 99(23), 7711-7713.
Reißig, H-U. Donor-acceptor-substituted cyclopropanes: Versatile building blocks in organic synthesis, Small ring compounds in organic synthesis III; Berlin, Heidelberg, 1988; Baird, M.S.; Reißig, H.U.; Salaün, J.R.Y., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1988, pp 73-135.
Yu, M.; Pagenkopf, B.L. Recent advances in donor–acceptor (DA) cyclopropanes. Tetrahedron, 2005, 61(2), 321-347.
Pagenkopf, B.L.; Vemula, N. Cycloadditions of donor–acceptor cyclopropanes and nitriles. Eur. J. Org. Chem., 2017, (18), 2561-2567.
Gharpure, S.J.; Nanda, L.N. Application of oxygen/nitrogen substituted donor-acceptor cyclopropanes in the total synthesis of natural products. Tetrahedron Lett., 2017, 58(8), 711-720.
Davies, H.M.; Antoulinakis, E.G. Intermolecular metal-catalyzed carbenoid cyclopropanations. Org. React., 2004, 57, 1-326.
Ganesh, V.; Chandrasekaran, S. Recent advances in the synthesis and reactivity of vinylcyclopropanes. Synthesis, 2016, 48(24), 4347-4380.
Charette, A.B.; Wurz, R.P.; Ollevier, T. Synthesis of α-nitro-α-diazocarbonyl derivatives and their applications in the cyclopropanation of alkenes and in O–H insertion reactions. Helv. Chim. Acta, 2002, 85(12), 4468-4484.
Charette, A.B.; Wurz, R. Progress towards asymmetric intermolecular and intramolecular cyclopropanations using α-nitro-α-diazo carbonyl substrates. J. Mol. Catal. Chem., 2003, 196(1), 83-91.
Jackson, S.K.; Karadeolian, A.; Driega, A.B.; Kerr, M.A. Stereodivergent methodology for the synthesis of complex pyrrolidines. J. Am. Chem. Soc., 2008, 130(12), 4196-4201.
Sapeta, K.; Kerr, M.A. The cycloaddition of nitrones with homochiral cyclopropanes. J. Org. Chem., 2007, 72(22), 8597-8599.
Karadeolian, A.; Kerr, M.A. Examination of homo-[3 + 2]-dipolar cycloaddition: Mechanistic insight into regio- and diastereoselectivity. J. Org. Chem., 2007, 72(26), 10251-10253.
Young, I.S.; Williams, J.L.; Kerr, M.A. Diastereoselective synthesis of pyrrolidines using a nitrone/cyclopropane cycloaddition: Synthesis of the tetracyclic core of nakadomarin. A. Org. Lett., 2005, 7(5), 953-955.
Ganton, M.D.; Kerr, M.A. Magnesium iodide promoted reactions of nitrones with cyclopropanes: A synthesis of tetrahydro-1,2-oxazines. J. Org. Chem., 2004, 69(24), 8554-8557.
Perkin, W.H. LXXVIII.—On the synthetical formation of closed carbon-chains. J. Chem. Soc. Trans., 1885, 47(0), 801-855.
Ghanem, A.; Lacrampe, F.; Schurig, V. Rhodium(ii)-catalyzed inter- and intramolecular cyclopropanations with diazo compounds and phenyliodonium ylides: synthesis and chiral analysis. Helv. Chim. Acta, 2005, 88(2), 216-239.
Yongming, D.; Huang, Q.; Harathi, D.S.; Michael, P.D. Chiral dirhodium(ii) catalysts for selective metal carbene reactions. Curr. Org. Chem., 2016, 20(1), 61-81.
Nishikata, T.; Noda, Y.; Fujimoto, R.; Ishikawa, S. A facile formal [2+1] cycloaddition of styrenes with alpha-bromocarbonyls catalyzed by copper: efficient synthesis of donor–acceptor cyclopropanes. Chem. Commun., 2015, 51(64), 12843-12846.
Xin, X.Q.; Zhang, Q.; Liang, Y.J.; Zhang, R.; Dong, D.W. Tandem halogenation/Michael-initiated ring-closing reaction of alpha, beta-unsaturated nitriles and activated methylene compounds: One-pot diastereoselective synthesis of functionalized cyclopropanes. Org. Biomol. Chem., 2014, 12(15), 2427-2435.
Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Asymmetric cyclopropanation reactions. Synthesis, 2014, 46(08), 979-1029.
Lindsay, V.N.G.; Fiset, D.; Gritsch, P.J.; Azzi, S.; Charette, A.B. Stereoselective rh2(s-ibaz)4-catalyzed cyclopropanation of alkenes, alkynes, and allenes: Asymmetric synthesis of diacceptor cyclopropylphosphonates and alkylidenecyclopropanes. J. Am. Chem. Soc., 2013, 135(4), 1463-1470.
Stokes, S.; Mustain, R.; Pickle, L.; Mead, K.T. Rhodium-catalyzed cyclopropanations of 2-aryl-2H-chromenes with dialkyl malonate esters. A comparison of α-diazo derivatives and phenyliodonium ylides. Tetrahedron Lett., 2012, 53(30), 3890-3893.
Wang, Q.F.; Song, X.K.; Chen, J.; Yan, C.G. Pyridinium ylide-assisted one-pot two-step tandem synthesis of polysubstituted cyclopropanes. J. Comb. Chem., 2009, 11(6), 1007-1010.
Chen, J.; Xin, N.; Ma, S.M. Synthesis of polyfunctionalized vinyl cyclopropanes via the nal-catalyzed ring-opening cyclization of doubly activated cyclopropenes with 1,1-bis(phenylsulfonyl)ethylene. Tetrahedron Lett., 2009, 50(26), 3175-3177.
Ciaccio, J.A.; Aman, C.E. “Instant Methylide” modification of the corey–chaykovsky cyclopropanation reaction. Synth. Commun., 2006, 36(10), 1333-1341.
Wurz, R.P.; Charette, A.B. An expedient and practical method for the synthesis of a diverse series of cyclopropane α-amino acids and amines. J. Org. Chem., 2004, 69(4), 1262-1269.
Chelucci, G.; Saba, A. Intramolecular C-H insertion or styrene cyclopropanation in catalytic decomposition of dicyclohexyldiazomalonic esters. Tetrahedron Lett., 1995, 36(26), 4673-4676.
Wenkert, E. Oxycyclopropanes in organochemical synthesis. Acc. Chem. Res., 1980, 13(1), 27-31.
Nishiwaki, N. [2+1] Type cyclopropanation reactions. In:Methods and Applications of Cycloaddition Reactions in Organic Syntheses; John Wiley & Sons, 2013.
Tomilov, Y.V.; Menchikov, L.G.; Novikov, R.A.; Ivanova, O.A.; Trushkov, I.V. Methods for the synthesis of donor-acceptor cyclopropanes. Russ. Chem. Rev., 2018, 87(3), 201.
Doyle, M.P.; Forbes, D.C. Recent advances in asymmetric catalytic metal carbene transformations. Chem. Rev., 1998, 98(2), 911-936.
Pons, A.; Beucher, H.; Ivashkin, P.; Lemonnier, G.; Poisson, T.; Charette, A.B.; Jubault, P.; Pannecoucke, X. Rhodium-catalyzed cyclopropanation of fluorinated olefins: A straightforward route to highly functionalized fluorocyclopropanes. Org. Lett., 2015, 17(7), 1790-1793.
Xu, X.; Zhu, S.; Cui, X.; Wojtas, L.; Zhang, X.P. Cobalt(ii)-catalyzed asymmetric olefin cyclopropanation with α-ketodiazoacetates. Angew. Chem. Int. Ed., 2013, 52(45), 11857-11861.
Maurya, R.A.; Kapure, J.S.; Adiyala, P.R.; Srikanth, P.S.; Chandrasekhara, D.; Kamal, A. Catalyst-free stereoselective cyclopropanation of electron deficient alkenes with ethyl diazoacetate. RSC Advances, 2013, 3(36), 15600-15603.
Xu, X.; Lu, H.; Ruppel, J.V.; Cui, X.; Lopez de Mesa, S.; Wojtas, L.; Zhang, X.P. Highly asymmetric intramolecular cyclopropanation of acceptor-substituted diazoacetates by co(ii)-based metalloradical catalysis: Iterative approach for development of new-generation catalysts. J. Am. Chem. Soc., 2011, 133(39), 15292-15295.
Lindsay, V.N.G.; Nicolas, C.; Charette, A.B. Asymmetric rh(ii)-catalyzed cyclopropanation of alkenes with diacceptor diazo compounds: P-methoxyphenyl ketone as a general stereoselectivity controlling group. J. Am. Chem. Soc., 2011, 133(23), 8972-8981.
Zhu, S.; Xu, X.; Perman, J.A.; Zhang, X.P. A general and efficient cobalt(ii)-based catalytic system for highly stereoselective cyclopropanation of alkenes with α-cyanodiazoacetates. J. Am. Chem. Soc., 2010, 132(37), 12796-12799.
Marcoux, D.; Lindsay, V.N.G.; Charette, A.B. Use of achiral additives to increase the stereoselectivity in Rh(ii)-catalyzed cyclopropanations. Chem. Commun., 2010, 46(6), 910-912.
Marcoux, D.; Goudreau, S.R.; Charette, A.B. Trans-directing ability of the amide group: Enabling the enantiocontrol in the synthesis of 1,1-dicarboxy cyclopropanes. Reaction development, scope, and synthetic applications. J. Org. Chem., 2009, 74(23), 8939-8955.
Wulfman, D.S.; McDaniel, R.S. Decomposition d’une pyrazoline-1 par le fluoborate chivrique. Tetrahedron Lett., 1975, 16(50), 4523-4524.
Peace, B.W.; Wulfman, D.S. Preparation and Reactions of Diazomalonic Esters. Synthesis, 1973, 1973(03), 137-145.
O’Bannon, P.E.; Dailey, W.P. Catalytic cyclopropanation of alkenes with ethyl nitrodiazoacetate. A facile synthesis of ethyl 1-nitrocyclopropanecarboxylates. J. Org. Chem., 1989, 54(13), 3096-3101.
Salomon, R.G.; Kochi, J.K. Copper(i) catalysis in cyclopropanations with diazo compounds. Role of Olefin coordination. J. Am. Chem. Soc., 1973, 95(10), 3300-3310.
Jones, M.; Kulczycki, A.; Hummel, K.F. The addition of bis-carbomethoxycarbene to olefins. Tetrahedron Lett., 1967, 8(2), 183-187.
González-Bobes, F.; Fenster, M.D.B.; Kiau, S.; Kolla, L.; Kolotuchin, S.; Soumeillant, M. Rhodium-catalyzed cyclopropanation of alkenes with dimethyl diazomalonate. Adv. Synth. Catal., 2008, 350(6), 813-816.
Armstrong, E.L.; Kerr, M.A. Synthesis and reactivity of bis(2,2,2-trifluoroethyl) cyclopropane-1,1-dicarboxylates. Org. Chem. Front., 2015, 2(9), 1045-1047.
Angulo, B.; Fraile, J.M.; Herrerías, C.I.; Mayoral, J.A. Challenging cyclopropanation reactions on non-activated double bonds of fatty esters. RSC Advances, 2017, 7(32), 19417-19424.
Reyes, Y.; Mead, K.T. Acetoxy-substituted cyclopropane dicarbonyls as stable donor–acceptor–acceptor cyclopropanes. Synthesis, 2015, 47(19), 3020-3026.
Wurz, R.P.; Charette, A.B. Doubly activated cyclopropanes as synthetic precursors for the preparation of 4-nitro- and 4-cyano-dihydropyrroles and pyrroles. Org. Lett., 2005, 7(12), 2313-2316.
Zhu, S.; Perman, J.A.; Zhang, X.P. Acceptor/acceptor-substituted diazo reagents for carbene transfers: Cobalt-Catalyzed asymmetric Z-Cyclopropanation of Alkenes with α-Nitrodiazoacetates. Angew. Chem. Int. Ed., 2008, 47(44), 8460-8463.
Bos, M.; Huang, W.S.; Poisson, T.; Pannecoucke, X.; Charette, A.B.; Jubault, P. Catalytic enantioselective synthesis of highly functionalized difluoromethylated cyclopropanes. Angew. Chem. Int. Ed., 2017, 56(43), 13319-13323.
Zhu, J.L.; Wu, Y.P. Rhodium-catalyzed intramolecular cyclopropanation of α-diazo β-keto nitriles containing an unsaturated substituted cycloalkyl group. Synlett, 2017, 28(12), 1467-1472.
Nani, R.R.; Reisman, S.E. α-diazo-β-ketonitriles: uniquely reactive substrates for arene and alkene cyclopropanation. J. Am. Chem. Soc., 2013, 135(19), 7304-7311.
Wurz, R.P.; Charette, A.B. Hypervalent iodine(iii) reagents as safe alternatives to α-nitro-α-diazocarbonyls. Org. Lett., 2003, 5(13), 2327-2329.
Tao, J.; Tuck, T.N.; Murphy, G.K. Geminal dichlorination of phenyliodonium ylides of β-dicarbonyl compounds through double ligand transfer from (dichloroiodo)benzene. Synthesis, 2016, 48(05), 772-782.
Guo, J.; Liu, Y.; Li, X.; Liu, X.; Lin, L.; Feng, X. Nickel(ii)-catalyzed enantioselective cyclopropanation of 3-alkenyl-oxindoles with phenyliodonium ylide via free carbene. Chem. Sci., 2016, 7(4), 2717-2721.
Duan, Y-N.; Zhang, Z.; Zhang, C. Recyclable hypervalent-iodine-mediated dehydrogenative cyclopropanation under metal-free conditions. Org. Lett., 2016, 18(23), 6176-6179.
Goudreau, S.R.; Marcoux, D.; Charette, A.B. General method for the synthesis of phenyliodonium ylides from malonate esters: Easy access to 1,1-cyclopropane diesters. J. Org. Chem., 2009, 74(1), 470-473.
Georgakopoulou, G.; Kalogiros, C.; Hadjiarapoglou, L.P. Rhii-catalyzed thermal cyclopropanations of a phenyliodonium bis(carbomethoxy)methylide with alkenes and dienes. Synlett, 2001, 2001(12), 1843-1846.
Müller, P.; Fernandez, D. Carbenoid reactions in rhodium(ii)-catalyzed decomposition of iodonium ylides. Helv. Chim. Acta, 1995, 78(4), 947-958.
Tao, J.; Estrada, C.D.; Murphy, G.K. Metal-free intermolecular cyclopropanation between alkenes and iodonium ylides mediated by PhI(OAc)2·Bu4NI. Chem. Commun., 2017, 53(64), 9004-9007.
Moriarty, R.M.; Tyagi, S.; Kinch, M. Metal-free intramolecular cyclopropanation of alkenes through iodonium ylide methodology. Tetrahedron, 2010, 66(31), 5801-5810.
Deng, C.; Wang, L-J.; Zhu, J.; Tang, Y. A chiral cagelike copper(i) catalyst for the highly enantioselective synthesis of 1,1-cyclopropane diesters. Angew. Chem. Int. Ed., 2012, 51(46), 11620-11623.
Müller, P.; Bernardinelli, G.; Allenbach, Y.F.; Ferri, M.; Flack, H.D. Selectivity enhancement in the rh(ii)-catalyzed cyclopropanation of styrene with(silanyloxyvinyl)diazoacetates. Org. Lett., 2004, 6(11), 1725-1728.
Muller, P.; Allenbach, Y.; Robert, E. Rhodium(ii)-catalyzed olefin cyclopropanation with the phenyliodonium ylide derived from meldrum’s acid. Tetrahedron Asymmetry, 2003, 14(7), 779-785.
Chow, Y.L.; Bakker, B.H.; Iwai, K. Dimethyl-α-styrylsulphonium bromide as a reaction intermediate. J. Chem. Soc. Chem. Commun., 1980, (11), 521-522.
Chow, Y.L.; Bakker, B.H. Electrophilic addition of bromodimethylsulfonium bromide to olefins. Synthesis, 1982, 1982(08), 648-650.
Gopinath, P.; Chandrasekaran, S. Synthesis of functionalized dihydrothiophenes from doubly activated cyclopropanes using tetrathiomolybdate as the sulfur transfer reagent. J. Org. Chem., 2011, 76(2), 700-703.
Tabolin, A.A.; Gorbacheva, E.O.; Novikov, R.A.; Khoroshutina, Y.A.; Nelyubina, Y.V.; Ioffe, S.L. Synthesis and chemical transformations of six/six-membered bicyclic nitroso acetals. Russ. Chem. Bull., 2016, 65(9), 2243-2259.
Ivanov, K.L.; Villemson, E.V.; Budynina, E.M.; Ivanova, O.A.; Trushkov, I.V.; Melnikov, M.Y. Ring opening of donor–acceptor cyclopropanes with the azide ion: A tool for construction of n-heterocycles. Chem. Eur. J., 2015, 21(13), 4975-4987.
Nambu, H.; Fukumoto, M.; Hirota, W.; Ono, N.; Yakura, T. An efficient synthesis of cycloalkane-1,3-dione-2-spirocyclopropanes from 1,3-cycloalkanediones using (1-aryl-2-bromoethyl)-dimethylsulfonium bromides: application to a one-pot synthesis of tetrahydroindol-4(5h)-one. Tetrahedron Lett., 2015, 56(29), 4312-4315.
Stewart, J.M.; Westberg, H.H. Nucleophilic ring-opening additions to 1,1-disubstituted cyclopropanes. J. Org. Chem., 1965, 30(6), 1951-1955.
Danishefsky, S.; Rovnyak, G. Effects of substituents on the nucleophilic ring opening of activated cyclopropanes. J. Org. Chem., 1975, 40(1), 114-115.
Cérat, P.; Gritsch, P.J.; Goudreau, S.R.; Charette, A.B. Synthesis of enantioenriched allenes from 1,1-cyclopropanediesters. Org. Lett., 2010, 12(3), 564-567.
Saha, A.; Bhattacharyya, A.; Talukdar, R.; Ghorai, M.K. Stereospecific syntheses of enaminonitriles and β-enaminoesters via domino ring-opening cyclization(droc) of activated cyclopropanes with pronucleophilic malononitriles. J. Org. Chem., 2018, 83(4), 2131-2144.
Richmond, E.; Vuković, V.D.; Moran, J. Nucleophilic ring opening of donor–acceptor cyclopropanes catalyzed by a brønsted acid in hexafluoroisopropanol. Org. Lett., 2018, 20(3), 574-577.
Dey, R.; Kumar, P.; Banerjee, P. Lewis acid catalyzed annulation of cyclopropane carbaldehydes and aryl hydrazines: Construction of tetrahydropyridazines and application toward a one-pot synthesis of hexahydropyrrolo [1,2-b] pyridazines. J. Org. Chem., 2018, 83(10), 5438-5449.
Smith, R.J.; Nhu, D.; Clark, M.R.; Gai, S.; Lucas, N.T.; Hawkins, B.C. Synthesis of chromones from 1,1-diacylcyclopropanes: toward the synthesis of bromophycoic acid e. J. Org. Chem., 2017, 82(10), 5317-5327.
Budynina, E.M.; Ivanov, K.L.; Sorokin, I.D.; Melnikov, M.Y. Ring opening of donor-acceptor cyclopropanes with n-nucle-ophiles. Synthesis (Stuttg), 2017, 49(14), 3035-3068.
Ye, W.J.; Tan, C.; Yao, J.; Xue, S.W.; Li, Y.; Wang, C.D. Iodine-promoted domino reactions of 1-cyanocyclopropane 1-esters: A straightforward approach to fully substituted 2-aminofurans. Adv. Synth. Catal., 2016, 358(3), 426-434.
Xia, Y.; Liu, X.; Zheng, H.; Lin, L.; Feng, X. Asymmetric synthesis of 2,3-dihydropyrroles by ring-opening/cyclization of cyclopropyl ketones using primary amines. Angew. Chem. Int. Ed., 2015, 54(1), 227-230.
Matsuoka, S-I.; Numata, K.; Suzuki, M. Lewis acid-catalyzed ring-opening addition reactions of alcohols to vinylcyclopropane. Chem. Lett., 2015, 44(11), 1532-1534.
Ghosh, A.; Pandey, A.K.; Banerjee, P. Lewis acid catalyzed annulation of donor–acceptor cyclopropane and n-tosylaziridinedicarboxylate: one-step synthesis of functionalized 2h-furo [2,3-c] pyrroles. J. Org. Chem., 2015, 80(14), 7235-7242.
Lifchits, O.; Charette, A.B. A mild procedure for the lewis acid-catalyzed ring-opening of activated cyclopropanes with amine nucleophiles. Org. Lett., 2008, 10(13), 2809-2812.
Gopinath, P.; Chandrasekaran, S. Catalyst-free, regioselective ring opening of donor-acceptor cyclopropanes: Synthesis of functionalized mono- and disulfides. Synthesis (Stuttg), 2016, 48(18), 3087-3096.
Gopinath, P.; Chandrakala, R.N.; Chandrasekaran, S. A mild protocol for the regioselective ring opening of doubly activated cyclopropanes by using selenolates generated in situ: Synthesis of functionalized organoselenium compounds. Synthesis (Stuttg), 2015, 47(10), 1488-1498.
Xia, Y.; Chang, F.; Lin, L.; Xu, Y.; Liu, X.; Feng, X. Asymmetric ring-opening of cyclopropyl ketones with β-naphthols catalyzed by a chiral n,n′-dioxide–scandium(iii) complex. Org. Chem. Front., 2018, 5(8), 1293-1296.
Martin, M.C.; Patil, D.V.; France, S. Functionalized 4-carboxy- and 4-keto-2,3-dihydropyrroles via ni(ii)-catalyzed nucleophilic amine ring-opening cyclizations of cyclopropanes. J. Org. Chem., 2014, 79(7), 3030-3039.
Nambu, H.; Fukumoto, M.; Hirota, W.; Yakura, T. Ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes with amines: rapid access to 2-substituted 4-hydroxyindole. Org. Lett., 2014, 16(15), 4012-4015.
Zhang, Z.; Zhang, W.; Li, J.; Liu, Q.; Liu, T.; Zhang, G. Synthesis of multisubstituted pyrroles from doubly activated cyclopropanes using an iron-mediated oxidation domino reaction. J. Org. Chem., 2014, 79(22), 11226-11233.
Zhang, Z.G.; Gao, X.L.; Li, Z.L.; Zhang, G.S.; Ma, N.N.; Liu, Q.F.; Liu, T.X. Pifa-mediated oxidative cyclization of 1-aroyl-n-arylcyclopropane-1-carboxamides and their application in the synthesis of pyrrolo [3,2-c]quinolinones. Org. Chem. Front., 2017, 4(3), 404-408.
Ghorai, M.K.; Talukdar, R.; Tiwari, D.P. A route to highly functionalized β-enaminoesters via a domino ring-opening cyclization/decarboxylative tautomerization sequence of donor–acceptor cyclopropanes with substituted malononitriles. Org. Lett., 2014, 16(8), 2204-2207.
Ghorai, M.K.; Talukdar, R.; Tiwari, D.P. An efficient synthetic route to carbocyclic enaminonitriles via lewis acid catalysed domino-ring-opening-cyclisation (droc) of donor–acceptor cyclopropanes with malononitrile. Chem. Commun., 2013, 49(74), 8205-8207.
Zhang, Z.G.; Zhang, F.S.; Wang, H.H.; Wu, H.; Duan, X.Y.; Liu, Q.F.; Liu, T.X.; Zhang, G.S. Catalyst-free domino reaction of 1-acryloyl-1-n-arylcarbamyl-cyclopropanes with amines: One-pot approach to 2,3,6,7-tetrahydro-1h-pyrrolo [3,2-c] pyridin-4(5h)-ones. Adv. Synth. Catal., 2015, 357(12), 2681-2686.
Ivanov, K.L.; Bezzubov, S.I.; Melnikov, M.Y.; Budynina, E.M. Donor–acceptor cyclopropanes as ortho-quinone methide equivalents in formal (4 + 2)-cycloaddition to alkenes. Org. Biomol. Chem., 2018, 16(21), 3897-3909.
Dey, R.; Banerjee, P. Lewis acid catalyzed diastereoselective cycloaddition reactions of donor–acceptor cyclopropanes and vinyl azides: Synthesis of functionalized azidocyclopentane and tetrahydropyridine derivatives. Org. Lett., 2017, 19(2), 304-307.
Curiel Tejeda, J.E.; Irwin, L.C.; Kerr, M.A. Annulation reactions of donor–acceptor cyclopropanes with (1-azidovinyl) benzene and 3-phenyl-2h-azirine. Org. Lett., 2016, 18(18), 4738-4741.
Grover, H.K.; Emmett, M.R.; Kerr, M.A. Carbocycles from donor-acceptor cyclopropanes. Org. Biomol. Chem., 2015, 13(3), 655-671.
Chen, H.Y.; Zhang, J.; Wang, D.Z. Gold-catalyzed rearrangement of alkynyl donor-acceptor cyclopropanes to construct highly functionalized alkylidenecyclopentenes. Org. Lett., 2015, 17(9), 2098-2101.
Flisar, M.E.; Emmett, M.R.; Kerr, M.A. Catalyst-free tandem ring-opening/click reaction of acetylene-bearing donor–acceptor cyclopropanes. Synlett, 2014, 25(16), 2297-2300.
Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. Copper-catalyzed highly enantioselective cyclopentannulation of indoles with donor–acceptor cyclopropanes. J. Am. Chem. Soc., 2013, 135(21), 7851-7854.
Humenny, W.J.; Kyriacou, P.; Sapeta, K.; Karadeolian, A.; Kerr, M.A. Multicomponent synthesis of pyrroles from cyclopropanes: A one-pot palladium (0)-catalyzed dehydrocarbonylation/dehydration. Angew. Chem. Int. Ed., 2012, 51(44), 11088-11091.
Wang, H.; Denton, J.R.; Davies, H.M.L. Sequential rhodium-, silver-, and gold-catalyzed synthesis of fused dihydrofurans. Org. Lett., 2011, 13(16), 4316-4319.
Lebold Terry, P.; Kerr Michael, A. Intramolecular annulations of donor–acceptor cyclopropanes. Pure Appl. Chem., 2010, 82(9), 1797.
Campbell, M.J.; Johnson, J.S.; Parsons, A.T.; Pohlhaus, P.D.; Sanders, S.D. Complexity-building annulations of strained cycloalkanes and c═o π bonds. J. Org. Chem., 2010, 75(19), 6317-6325.
Hao, W.; Harenberg, J.H.; Wu, X.; MacMillan, S.N.; Lin, S. Diastereo- and enantioselective formal [3 + 2] cycloaddition of cyclopropyl ketones and alkenes via ti-catalyzed radical redox relay. J. Am. Chem. Soc., 2018, 140(10), 3514-3517.
Zhang, J.; Jiang, H.; Zhu, S. Cascade one-pot synthesis of indanone-fused cyclopentanes from the reaction of donor-acceptor cyclopropanes and enynals via a sequential hydrolysis/knoevenagel condensation/ [3+2] cycloaddition. Adv. Synth. Catal., 2017, 359(17), 2924-2930.
Kaga, A.; Gandamana, D.A.; Tamura, S.; Demirelli, M.; Chiba, S. [3+2] annulation of donor–acceptor cyclopropanes with vinyl azides. Synlett, 2017, 28(09), 1091-1095.
Verma, K.; Banerjee, P. Lewis acid-catalyzed [3+2] cycloaddition of donor-acceptor cyclopropanes and enamines: Enantioselective synthesis of nitrogen-functionalized cyclopentane derivatives. Adv. Synth. Catal., 2016, 358(13), 2053-2058.
Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Efficient construction of oxa- and aza- [n.2.1] skeletons: Lewis acid catalyzed intramolecular [3+2] cycloaddition of cyclopropane 1,1-diesters with carbonyls and imines. Angew. Chem. Int. Ed., 2010, 49(18), 3215-3218.
Racine, S.; De Nanteuil, F.; Serrano, E.; Waser, J. Synthesis of (carbo)nucleoside analogues by [3+2] annulation of aminocyclopropanes. Angew. Chem. Int. Ed., 2014, 53(32), 8484-8487.
Xu, H.; Qu, J-P.; Liao, S.; Xiong, H.; Tang, Y. Highly enantioselective [3+2] annulation of cyclic enol silyl ethers with donor–acceptor cyclopropanes: Accessing 3a-hydroxy [n.3.0] carbobicycles. Angew. Chem. Int. Ed., 2013, 52(14), 4004-4007.
Yang, P.F.; Shen, Y.; Feng, M.L.; Yang, G.S.; Chai, Z. Lewis acid catalyzed [3+2] annulation of -butyrolactone fused cyclopropane with aldehydes/ketones. Eur. J. Org. Chem., 2018, (30), 4103-4112.
Goldberg, A.F.G.; O’Connor, N.R.; Craig, R.A.; Stoltz, B.M. Lewis acid mediated (3 + 2) cycloadditions of donor–acceptor cyclopropanes with heterocumulenes. Org. Lett., 2012, 14(20), 5314-5317.
Pohlhaus, P.D.; Sanders, S.D.; Parsons, A.T.; Li, W.; Johnson, J.S. Scope and mechanism for lewis acid-catalyzed cycloadditions of aldehydes and donor−acceptor cyclopropanes: Evidence for a stereospecific intimate ion pair pathway. J. Am. Chem. Soc., 2008, 130(27), 8642-8650.
Pohlhaus, P.D.; Johnson, J.S. Enantiospecific sn(ii)- and sn(iv)-catalyzed cycloadditions of aldehydes and donor−acceptor cyclopropanes. J. Am. Chem. Soc., 2005, 127(46), 16014-16015.
Fu, X.; Lin, L.L.; Xia, Y.; Zhou, P.F.; Liu, X.H.; Feng, X.M. Catalytic asymmetric [3+3] annulation of cyclopropanes with mercaptoacetaldehyde. Org. Biomol. Chem., 2016, 14(25), 5914-5917.
Sathishkannan, G.; Srinivasan, K. [3+3] annulation of donor–acceptor cyclopropanes with mercaptoacetaldehyde: Application to the synthesis of tetrasubstituted thiophenes. Chem. Commun., 2014, 50(31), 4062-4064.
Zhou, Y-Y.; Li, J.; Ling, L.; Liao, S-H.; Sun, X-L.; Li, Y-X.; Wang, L-J.; Tang, Y. Highly enantioselective [3+3] cycloaddition of aromatic azomethine imines with cyclopropanes directed by π–π stacking interactions. Angew. Chem. Int. Ed., 2013, 52(5), 1452-1456.
Grover, H.K.; Lebold, T.P.; Kerr, M.A. Tandem cyclopropane ring-opening/conia-ene reactions of 2-alkynyl indoles: a [3 + 3] annulative route to tetrahydrocarbazoles. Org. Lett., 2011, 13(2), 220-223.
Perreault, C.; Goudreau, S.R.; Zimmer, L.E.; Charette, A.B. Cycloadditions of aromatic azomethine imines with 1,1-cyclopropane diesters. Org. Lett., 2008, 10(5), 689-692.
Zhang, H-H.; Luo, Y-C.; Wang, H-P.; Chen, W.; Xu, P-F. Ticl4 promoted formal [3 + 3] cycloaddition of cyclopropane 1,1-diesters with azides: synthesis of highly functionalized triazinines and azetidines. Org. Lett., 2014, 16(18), 4896-4899.
Liu, H.; Yuan, C.; Wu, Y.; Xiao, Y.; Guo, H. Sc(otf)3-catalyzed [3 + 3] cycloaddition of cyclopropane 1,1-diesters with phthalazinium dicyanomethanides. Org. Lett., 2015, 17(17), 4220-4223.
Chidley, T.; Vemula, N.; Carson, C.A.; Kerr, M.A.; Pagenkopf, B.L. Cascade reaction of donor–acceptor cyclopropanes: mechanistic studies on cycloadditions with nitrosoarenes and cis-diazenes. Org. Lett., 2016, 18(12), 2922-2925.
Xu, H.; Hu, J-L.; Wang, L.; Liao, S.; Tang, Y. Asymmetric annulation of donor–acceptor cyclopropanes with dienes. J. Am. Chem. Soc., 2015, 137(25), 8006-8009.
Zhang, C.; Tian, J.; Ren, J.; Wang, Z. Intramolecular parallel [4+3] cycloadditions of cyclopropane 1,1-diesters with [3] dendralenes: Efficient construction of [5.3.0] decane and corresponding polycyclic skeletons. Chem. - Eur. J., 2017, 23(6), 1231-1236.
Garve, L.K.B.; Pawliczek, M.; Wallbaum, J.; Jones, P.G.; Werz, D.B. [4+3] cycloaddition of donor–acceptor cyclopropanes with amphiphilic benzodithioloimine as surrogate for ortho‐bisthioquinone. Chem. - Eur. J., 2016, 22(2), 521-525.
Ghosh, A.; Mandal, S.; Chattaraj, P.K.; Banerjee, P. Ring expansion of donor–acceptor cyclopropane via substituent controlled selective n-transfer of oxaziridine: synthetic and mechanistic insights. Org. Lett., 2016, 18(19), 4940-4943.
Denisov, D.A.; Novikov, R.A.; Potapov, K.V.; Korolev, V.A.; Shulishov, E.V.; Tomilov, Y.V. 1,1′-bicyclopropyl-2,2-dicarboxylate and cyclopropylmethylidenemalonate as homovinylogs and vinylogs of donor-acceptor cyclopropanes. ChemistrySelect, 2016, 1(20), 6374-6381.
Wenz, D.R.; Read de Alaniz, J. Aza-piancatelli rearrangement initiated by ring opening of donor–acceptor cyclopropanes. Org. Lett., 2013, 15(13), 3250-3253.
Schmidt, C.D.; Kaschel, J.; Schneider, T.F.; Kratzert, D.; Stalke, D.; Werz, D.B. Donor-substituted nitrocyclopropanes: Immediate ring-enlargement to cyclic nitronates. Org. Lett., 2013, 15(23), 6098-6101.
Phun, L.H.; Patil, D.V.; Cavitt, M.A.; France, S. A catalytic homo-nazarov cyclization protocol for the synthesis of heteroaromatic ring-fused cyclohexanones. Org. Lett., 2011, 13(8), 1952-1955.
Ma, H.; Hu, X-Q.; Luo, Y-C.; Xu, P-F. 3,4,5-trimethylphenol and lewis acid dual-catalyzed cascade ring-opening/cyclization: direct synthesis of naphthalenes. Org. Lett., 2017, 19(24), 6666-6669.
Cavitt, M.A.; France, S. Aluminum(iii)-catalyzed, formal homo-nazarov-type ring-opening cyclizations toward the synthesis of functionalized tetrahydroindolizines. Synthesis, 2016, 48(12), 1910-1919.
Chen, H.; Zhang, J.; Wang, D.Z. Gold-catalyzed rearrangement of alkynyl donor–acceptor cyclopropanes to construct highly functionalized alkylidenecyclopentenes. Org. Lett., 2015, 17(9), 2098-2101.
Ivanov, K.L.; Villemson, E.V.; Latyshev, G.V.; Bezzubov, S.I.; Majouga, A.G.; Melnikov, M.Y.; Budynina, E.M. Regioselective hydrogenolysis of donor–acceptor cyclopropanes with zn-acoh reductive system. J. Org. Chem., 2017, 82(18), 9537-9549.
Zhang, D.; Song, H.; Qin, Y. Total synthesis of indoline alkaloids: a cyclopropanation strategy. Acc. Chem. Res., 2011, 44(6), 447-457.
Levin, S.; Nani, R.R.; Reisman, S.E. Enantioselective total synthesis of(+)-salvileucalin b. J. Am. Chem. Soc., 2011, 133(4), 774-776.
Tanimori, S.; He, M.Q.; Nakayama, M. Stereoselective syntheses of 22-oxavitamin-d3 d-ring and cd-ring synthones by using cleavage of activated cyclopropane. Synth. Commun., 1993, 23(20), 2861-2868.
Chumoyer, M.Y.; Danishefsky, S.J. On the mode of action of myrocin-c - evidence for a cc-1065 connection. Tetrahedron Lett., 1993, 34(19), 3025-3028.
Tanimori, S.J.; Tsubota, M.; He, M.Q.; Nakayama, M. A new nucleophilic ring-opening of an activated cyclopropane and a formal synthesis of (+/-)-carbovir. Biosci. Biotechnol. Biochem., 1995, 59(11), 2091-2093.
Breitler, S.; Carreira, E.M. Total synthesis of (+)-crotogoudin. Angew. Chem. Int. Ed., 2013, 52(42), 11168-11171.
Grover, H.K.; Emmett, M.R.; Kerr, M.A. γ-substituted butanolides from cyclopropane hemimalonates: an expedient synthesis of natural (r)-dodecan-4-olide. Org. Lett., 2013, 15(18), 4838-4841.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [276 - 312]
Pages: 37
DOI: 10.2174/1385272823666190213114604
Price: $58

Article Metrics

PDF: 29
PRC: 1