Microwave-Assisted Synthesis of Bile Acids Derivatives: An Overview

Author(s): Ljubica M. Grbović, Ksenija J. Pavlović*, Suzana S. Jovanović-Šanta, Bojana R. Vasiljević.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The first attempts at microwave-assisted (MW) syntheses of bile acid derivatives were performed in domestic MW appliances. However, the reproducibility of these syntheses, which were performed in uncontrolled conditions, was very low. In the first part of this overview, compounds synthesized under such conditions are presented. Consequently, with the development of MW technology, MW-assisted reactions in MW reactors became reproducible. Thus, in the second part of this review, syntheses of bile acidsbased compounds in MW reactors are presented. Among others, publications dealing with the following topics will be covered:

− Chemical transformations of hydroxyl and/or carboxyl functions of bile acids into esters or amides,

− Hydroxyl group oxidations,

− Derivatization of oxo-compounds with different nitrogen-containing compounds (e.g. 4-amino-3- substituted-1H-1,2,4-triazole-5-thiones, thiocarbohydrazides and thiosemicarbazides)

Bile acid-based molecular tweezers, capable of stereospecific molecular recognition

Reactions of hydroxyl functions to give chlorine derivatives, presenting reactive intermediates in substitution reactions with N- or O-containing nucleophilic arylhydrazides, urea derivatives, substituted thiadiazoles or triazoles or amino acid methyl esters, mainly in solvent-free conditions.

Some of the synthesized compounds expressed antimicrobial potential and/or good recognition properties as artificial receptors for specific amino acids or anions.

Detailed comparisons between conventional and MW-assisted procedures for chemical transformations of bile acids are given in most of the presented publications. Based on these results, MW irradiation methods are simpler, more efficient, cleaner and faster than conventional synthetic methods, meeting the requirements of green chemistry.

Keywords: Lithocholic, cholic, deoxycholic, chenodeoxycholic, hyodeoxycholic, ursocholic, ursodeoxycholic acid, green synthesis.

[1]
Dicks, P. Green Organic Chemistry in Lecture and Laboratory; Taylor & FrancisGroup: Boca Raton, 2012.
[2]
Lévêque, J-M.; Cravotto, G. Power ultrasound, and ionic liquids. A new synergy in green organic synthesis. Chimia, 2006, 60, 313-320.
[3]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: An efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2017, 82, 1-28.
[4]
Veitía, M.S-I.; Ferroud, C. New activation methods used in green chemistry for the synthesis of high added value molecules. Int. J. Energy Environ. Eng., 2015, 6, 37-46.
[5]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27, 279-282.
[6]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis – A review. Tetrahedron, 2001, 57, 9225-9283.
[7]
Loupy, A. Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim,, 2002.
[8]
Kappe, C.O.; Dallinger, D.; Murphree, S.S. Practical Microwave Synthesis for Organic Chemists; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.
[9]
De la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34, 164-178.
[10]
Herrero, M.A.; Kremsner, J.M.; Kappe, C.O. Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem., 2008, 73, 36-47.
[11]
Razzaq, T.; Kremsner, J.M.; Kappe, C.O. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators. J. Org. Chem., 2008, 73, 6321-6329.
[12]
Obermayer, D.; Gutmann, B.; Kappe, C.O. Microwave chemistry in silicon carbide reaction vials: Separating thermal from nonthermal effects. Angew. Chem. Int. Ed., 2009, 48, 8321-8324.
[13]
Gutmann, B.; Obermayer, D.; Reichart, B.; Prekodravac, B.; Irfan, M.; Kremsner, J.M.; Kappe, C.O. Sintered silicon carbide: A new ceramic vessel material for microwave chemistry in single-mode reactors. Chem. Eur. J., 2010, 16, 12182-12194.
[14]
Kappe, C.O.; Damm, M. Parallel microwave chemistry in silicon carbide microtiter platforms: A review. Mol. Divers., 2012, 16, 5-25.
[15]
Kappe, C.O.; Pieber, B.; Dallinger, D. Microwave effects in organic synthesis: myth or reality? Angew. Chem. Int. Ed., 2013, 52, 1088-1094.
[16]
Kappe, C.O. Reply to the correspondence on microwave effects in organic synthesis. Angew. Chem. Int. Ed., 2013, 52, 7924-7928.
[17]
Jain, A.K.; Singla, R.K. An overview of microwave assisted technique: green synthesis. Webmed Cent. Pharm. Sci, 2011, 2, 2-15.
[18]
Larhed, M.; Olafsson, K. Microwave methods in organic synthesis. Top. Curr. Chem., 2006, 1, 266-278.
[19]
Polshettiwar, V.; Nadagouda, M.N.; Varma, R.S. Microwave-Assisted chemistry: A rapid and sustainable route to synthesis of organics and nanomaterials. Aust. J. Chem., 2009, 62, 16-26.
[20]
Talaviya, S.; Majmudar, F. Green chemistry: A tool in Pharmaceutical Chemistry. NHL J. Med.Sci., 2012, 1, 7-13.
[21]
Savage, P.B.; Li, C. Cholic acid derivatives: Novel antimicrobials. Expert Opin. Investig. Drugs, 2000, 2, 263-272.
[22]
Zhu, X-X.; Nichifor, M. Polymeric materials containing bile acids. Acc. Chem. Res., 2002, 35, 539-546.
[23]
Virtanen, E.; Kolehmainen, E. Use of bile acids in pharmacological and supramolecular applications. Eur. J. Org. Chem., 2004, 16, 3385-3399.
[24]
Hanson, J.R. Steroids: Reactions and partial synthesis. Nat. Prod. Rep., 2004, 21, 386-394.
[25]
Mukhopadhy, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci. India, 2004, 87, 1666-1683.
[26]
Kuhajda, K.; Kevrešan, S.; Kandrač, J.; Fawcett, J.P.; Mikov, M. Chemical and metabolic transformations of selected bile acids. Eur. J. Drug Metab. Pharmacokinet., 2006, 31, 179-235.
[27]
Balakrishnan, A.; Polli, J.E. Apical sodium dependent bile acid transporter (ASBT,SLC10A2): A potential prodrug target. Mol. Pharm., 2006, 3, 223-230.
[28]
Wei, Z.J.; Xia, Z.X. Biomaterials made of bile acids. Sci. China Ser. B Chem., 2009, 52, 849-861.
[29]
Gautrot, J.E.; Zhu, X.X. Macrocyclic bile acids: From molecular recognition to degradable biomaterial building blocks. J. Mater. Chem., 2009, 19, 5705-5716.
[30]
Sharma, R.; Long, A.; Gilmer, J.F. Advances in bile acid medicinal chemistry. Curr. Med. Chem., 2011, 18, 4029-4052.
[31]
Hofmann, A.F.; Hagey, L.R. Key discoveries in bile acid chemistry and biology and their clinical applications: History of the last eight decades. J. Lipid Res., 2014, 55, 1553-1595.
[32]
Brycki, B.; Koenig, H.; Pospieszny, T. Quaternary alkylammonium conjugates of steroids: Synthesis, molecular structure, and biological studies. Molecules, 2015, 20, 20887-20900.
[33]
Dayal, B.; Rao, K.; Salen, G. Microwave-induced organic reactions of bile acids: Esterification, deformylation and deacetylation using mild reagents. Steroids, 1995, 60, 453-457.
[34]
Dayal, B.; Rapole, K.R.; Salen, G.; Shefer, S.; Tint, G.S.; Wilson, S.R. Microwave-induced rapid synthesis of bile acid conjugates. Synlett, 1995, 861-862.
[35]
Dayal, B.; Rapole, K.R.; Patel, C.; Pramanik, B.N.; Shefer, S.; Tint, G.S.; Salen, G. Microwave-induced rapid synthesis of sarcosine conjugated bile acids. Bioorg. Med. Chem. Lett., 1995, 5, 1301-1306.
[36]
Dayal, B.; Bhojawala, J.; Rapole, K.R.; Pramanik, B.N.; Ertel, N.H.; Shefer, S.; Salen, G. Chemical synthesis, structural analysis, and decomposition of N-Nitroso bile acid conjugates. Bioorg. Med. Chem., 1996, 4, 885-890.
[37]
Dayal, B.; Ertel, N.H.; Padia, J.; Rapole, K.R.; Salen, G. 7β-Hydroxy bile alcohols: Facile synthesis and 2D 1NMR studies of 5β-cholestane-3α,7β,12α,25-tetrol. Steroids, 1997, 62, 409-411.
[38]
Pore, V.S.; Aher, N.G.; Kumar, M.; Shukla, P.K. Design and synthesis of fluconazole/bile acid conjugate using click reaction. Tetrahedron, 2006, 62, 11178-11186.
[39]
Aher, N.G.; Pore, V.S.; Mishra, N.N.; Kumar, A.; Shukla, P.K.; Sharma, A.; Bhat, M.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg. Med. Chem. Lett., 2009, 19, 759-763.
[40]
Aher, N.G.; Pore, V.S.; Patil, S.P. Design, synthesis, and micellar properties of bile acid dimers and oligomers linked with a 1,2,3-triazole ring. Tetrahedron, 2007, 63, 12927-12934.
[41]
Vatmurge, N.S.; Hazra, B.G.; Pore, V.S.; Shirazi, F.; Chavan, P.S.; Deshpande, M.V. Synthesis and antimicrobial activity of β-lactam-bile acid conjugates linked via triazole. Bioorg. Med. Chem. Lett., 2008, 18, 2043-2047.
[42]
Vatmurge, N.S.; Hazra, B.G.; Pore, V.S.; Shirazi, F.; Deshpande, M.V.; Kadreppa, S.; Chattopadhyay, S.; Gonnade, R.G. Synthesis and biological evaluation of bile acid dimers linked with 1,2,3-triazole and bis-β-lactam. Org. Biomol. Chem., 2008, 6, 3823-3830.
[43]
Zeng, B.T.; Zhao, Z.G.; Liu, X.L.; Shi, Y. Microwave assisted one-pot synthesis of novel molecular clefts with only one chiral arm based on deoxycholic acid. Chin. Chem. Lett., 2008, 19, 33-36.
[44]
Cravotto, G.; Boffa, L.; Turello, M.; Parenti, M.; Barge, A. Chemical modifications of bile acids under high-intensity ultrasound or microwave irradiation. Steroids, 2005, 70, 77-83.
[45]
Chen, Y.; Zhao, Z.G.; Liu, X.L.; Shi, Z.C. Synthesis of novel alkoxycarbonyl thiosemicarbazide molecular tweezers derived from deoxycholic acid under microwave irradiation. J. Chem. Res., 2010, 34, 416-420.
[46]
Zhao, Z-G.; Liu, X-L.; Chen, Y.; Shi, Z-C. One-pot synthesis of new carbamate-type molecular tweezers derived from deoxycholic acid under microwave irradiation. J. Chem. Res., 2010, 34, 481-484.
[47]
Chen, Y.; Zhao, Z.G.; Liu, X-L.; Shi, Z-C. A Facile and efficient approach to the synthesis of novel chiral molecular tweezers based on deoxycholic acid under microwave irradiation. Lett. Org. Chem., 2011, 8, 210-215.
[48]
Huong, N.T.T.; Klímková, P.; Sorrenti, A.; Mancini, G.; Drašar, P. Synthesis of spiroannulated oligopyrrole macrocycles derived from lithocholic acid. Steroids, 2009, 74, 715-720.
[49]
Thi, T.H.N.; Cardová, L.; Dvořáková, M.; Ročková, D.; Drašar, P. Synthesis of cholic acid based calixpyrroles and porphyrins. Steroids, 2012, 77, 858-863.
[50]
Ibrahim-Ouali, M.; Botsi-Nkomendi, N.; Rocheblave, L. Synthesis of heterosteroids. First synthesis of oxa steroid from cholic acid. Tetrahedron Lett., 2010, 51, 93-95.
[51]
Ibrahim-Ouali, M.; Rocheblave, L. First synthesis of thia steroids from cholic acid. Steroids, 2010, 75, 701-709.
[52]
Ibrahim-Ouali, M.; Hamze, K.; Rocheblave, L. Synthesis of 12-oxa, 12-aza and 12-thia cholanetriols. Steroids, 2011, 76, 324-330.
[53]
Ibrahim-Ouali, M.; Zoubir, J.; Romero, E. A ring-closing metathesis approach to secosteroidal macrocycles. Tetrahedron Lett., 2011, 52, 7128-7131.
[54]
Ibrahim-Ouali, M.; Romero, E. Synthesis of various secosteroidal macrocycles by ring-closing metathesis. Steroids, 2013, 78, 651-661.
[55]
Ibrahim-Ouali, M.; Hamze, K. A click chemistry approach to secosteroidal macrocycles. Steroids, 2014, 80, 102-110.
[56]
Popadyuk, I.; Markov, A.V.; Salomatina, O.V.; Logashenko, E.B.; Shernyukov, A.V.; Zenkova, M.A.; Salakhutdinov, N.F. Synthesis and biological activity of novel deoxycholic acid derivatives. Bioorg. Med. Chem., 2015, 23, 5022-5034.
[57]
Dang, Z.; Lin, A.; Ho, P.; Soroka, D.; Lee, K-H.; Huang, L.; Chen, C-H. Synthesis and proteasome inhibition of lithocholic acid derivatives. Bioorg. Med. Chem. Lett., 2011, 21, 1926-1928.
[58]
Ahonen, K.V.; Lahtinen, M.K.; Valkonen, A.M.; Dračínský, M.; Kolehmainen, E.T. Microwave assisted synthesis and solid-state characterization of lithocholyl amides of isomeric aminopyridines. Steroids, 2011, 76, 261-268.
[59]
Yang, J.; Cheng, Y.Y.; Shi, Z.C.; Zhao, Z.G. Synthesis of novel triazole derivatives of methyl 3-oxocholanate using microwave irradiation. J. Chem. Res., 2010, 34, 680-683.
[60]
Shi, Z-C.; Zhao, Z-G.; Liu, X-L.; Wu, L. Synthesis of new deoxycholic acid bis thiocarbazones under solvent-free conditions using microwave irradiation. J. Chem. Res., 2011, 35, 198-201.
[61]
Shi, Z.; Zhao, Z.; Liu, M.; Wang, X. Solvent-free synthesis of novel unsymmetric chenodeoxycholic acid bis thiocarbazone derivatives promoted by microwave irradiation and evaluation of their antibacterial activity. C. R. Chim., 2013, 16, 977-984.
[62]
Shi, Z-C.; Zhao, Z-G.; Liu, X-L.; Qiu, L-Y. Rapid and efficient synthesis of new deoxycholic acid thiosemicarbazone derivatives under solvent-free conditions using microwaves. Lett. Org. Chem., 2011, 8, 515-519.
[63]
Qiu, L.; Shi, Z.; Mei, Q.; Zhao, Z. Microwave-assisted synthesis and antibacterial activity of novel chenodeoxycholic acid thiosemicarbazone derivatives. J. Chem. Res., 2011, 35, 456-459.
[64]
Shi, Z.C.; Zhao, Z.G.; Liu, X.L.; Chen, Y. Synthesis of new hyodeoxycholic acid thiosemicarbazone derivatives under solvent-free conditions using microwave. Chin. Chem. Lett., 2011, 22, 405-408.
[65]
Zhao, Z-G.; Yan, P.; Liu, X-L.; Shi, Z-C. microwave assisted solvent-free synthesis of novel chenodeoxycholic acid thiosemicarbazone derivatives and studies on antibacterial activities. Lett. Org. Chem., 2012, 9, 604-608.
[66]
Zhao, Z.; Li, L.; Liu, M.; Mei, Q. An efficient synthesis of novel bis-1,3,4-thiadiazolyl-carbamate derivatives based on deoxycholic acid under microwave irradiation. J. Chem. Res., 2012, 36, 218-221.
[67]
Yang, J.; Zhao, Z.; Li, H. Synthesis using microwave irradiation, characterisation and antibacterial activity of novel deoxycholic acid-triazole conjugates. J. Chem. Res., 2012, 36, 383-386.
[68]
Wang, X.; Liu, X.; Jiang, Y.; Zhao, Z. Microwave-assisted synthesis and in vitro antibacterial activity of novel steroidal 1,2,4-triazole Schiff base derivatives. J. Chem. Res., 2014, 38, 300-303.
[69]
Li, X.; Zhao, Z.; Cheng, Y.; Li, H. Synthesis of novel arylhydrazide molecular tweezer artificial receptors based on deoxycholic acid using microwave irradiation. J. Chem. Res., 2011, 35, 234-237.
[70]
Liu, X.L.; Zhao, Z.G.; Zeng, B.T. Solvent-Fee synthesis of molecular tweezer artificial receptors derived from deoxycholic acid under microwave irradiation. Chin. J. Org. Chem., 2007, 27, 994-998.
[71]
Li, X.; Qiu, L.; Mei, Q.; Bi, Q.; Zhao, Z. Preparation of novel molecular tweezers based on 3,6-O-(2-acylhydrazinocarbonyl) esters of hyodeoxycholic acid using microwave irradiation. J. Chem. Res., 2011, 35, 364-367.
[72]
Zeng, B.; Zhao, Z.; Zhouand, L.; Li, Q. Synthesis of novel chiral cholic acid-based molecular tweezers containing unsymmetrically disubstituted urea units using microwave irradiation. J. Chem. Res., 2012, 36, 206-209.
[73]
Liu, M.; Wang, X.; Bi, Q.; Zhao, Z. Microwave-assisted synthesis and recognition properties of chiral molecular tweezers based on deoxycholic acid. J. Chem. Res., 2013, 37, 394-397.
[74]
Ye, Y.; Suo, Y.; Yang, F.; Han, L. Microwave-assisted Synthesis of novel chiral receptors derived from deoxycholic acid and their molecular recognition properties. Chem. Lett., 2014, 43, 1812-1814.
[75]
Y., Ye; Z., Zhao; X., Liu; Q., Li Microwave-assisted synthesis of indole-6-acylhydrazone and their antibacterial activities. Chin. J. Org. Chem., 2009, 29, 993-997.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 3
Year: 2019
Page: [256 - 275]
Pages: 20
DOI: 10.2174/1385272823666190213114104
Price: $58

Article Metrics

PDF: 23
HTML: 2
EPUB: 1
PRC: 1

Special-new-year-discount