Overdoses of Acetaminophen Disrupt the Thyroid-Liver Axis in Neonatal Rats

Author(s): Ahmed R.G.*.

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 19 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: The aim of the study was to examine the impact of neonatal acetaminophen (APAP; paracetamol) administrations on the thyroid-liver axis in male Wistar rats.

Methods: APAP (100 or 350mg/kg) was orally administered to neonates from Postnatal Day (PND) 20 to 40.

Results: Both APAP doses elicited a substantial increase in serum TSH, albumin, AST, ALT, and ALP values, and a profound decrease in serum FT4 and FT3 values at PND 40 relative to those in the control group. Additionally, the hypothyroid state in both APAP-treated groups may increase the histopathological variations in the neonatal liver, such as destructive degeneration, fibrosis, fatty degeneration, fibroblast proliferation, haemorrhage, oedema, and vacuolar degeneration, at PND 40. Moreover, in the APAP groups, a marked depression was recorded in the t-SH and GSH levels and GPx and CAT activities at PND 40 in the neonatal liver compared to those in the control group. However, the levels of hepatic LPO, H2O2, and NO were increased in both APAP-treated groups at PND 40. All previous alterations were dose- dependent.

Conclusion: Neonatal APAP caused a hypothyroidism and disturbed hepatic cellular components by increasing prooxidant markers and decreasing antioxidant markers, causing hepatotoxicity. Thus, neonatal administrations of APAP may act as a neonatal thyroid-liver disruptor.

Keywords: Acetaminophen, thyroid, liver, prooxidants, antioxidants, rat newborns.

[1]
Bauer, A.Z.; Kriebel, D.; Herbert, M.R.; Bornehag, C.G.; Swan, S.H. Prenatal paracetamol exposure and child neurodevelopment: A review. Horm. Behav., 2018, 101, 125-147.
[2]
Bornehag, C.G.; Reichenberg, A.; Hallerback, M.U.; Wikstrom, S.; Koch, H.M.; Jonsson, B.A.; Swan, S.H. Prenatal exposure to acetaminophen and children’s language development at 30 months. Eur. Psych., 2018, 51, 98-103.
[3]
Cohen, I.V.; Cirulli, E.T.; Mitchell, M.W.; Jonsson, T.J.; Yu, J.; Shah, N.; Spector, T.D.; Guo, L.; Venter, J.C.; Telenti, A. Acetaminophen (paracetamol) use modifies the sulfation of sex hormones. EBioMed., 2018, 28, 316-323.
[4]
Shaheen, S.O.; Newson, R.B.; Ring, S.M.; Rose-Zerilli, M.J.; Holloway, J.W.; Henderson, A.J. Prenatal and infant acetaminophen exposure, antioxidant gene polymorphisms, and childhood asthma. J. Allergy Clin. Immunol., 2010, 126(6), 1141-1148.
[5]
Magnus, M.C.; Karlstad, Ø.; Håberg, S.E.; Nafstad, P.; Davey Smith, G.; Nystad, W. Prenatal and infant paracetamol exposure and development of asthma: The Norwegian mother and child cohort study. Int. J. Epidemiol., 2016, 45(2), 512-522.
[6]
Reel, J.R.; Lawton, A.D.; Lamb, J.C.T. Reproductive toxicity evaluation of acetaminophen in Swiss CD-1 mice using a continuous breeding protocol. Fundam. Appl. Toxicol., 1992, 18(2), 233-239.
[7]
Kristensen, D.M.; Hass, U.; Lesné, L.; Lottrup, G.; Jacobsen, P.R.; Desdoits-Lethimonier, C.; Boberg, J.; Petersen, J.H.; Toppari, J.; Jensen, T.K.; Brunak, S.; Skakkebaek, N.E.; Nellemann, C.; Main, K.M.; Jégou, B.; Leffers, H. Intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders in human and rat. Hum. Reprod., 2011, 26(1), 235-244.
[8]
Thorpe, P.G.; Gilboa, S.M.; Hernandez-Diaz, S.; Lind, J.; Cragan, J.D.; Briggs, G.; Kweder, S.; Friedman, J.M.; Mitchell, A.A.; Honein, M.A. Medications in the first trimester of pregnancy: Most common exposures and critical gaps in understanding fetal risk. Pharmacoepidemiol. Drug Saf., 2013, 22(9), 1013-1018.
[9]
Thiele, K.; Kessler, T.; Arck, P.; Erhardt, A.; Tiegs, G. Acetaminophen and pregnancy: Short- and long-term consequences for mother and child. J. Reprod. Immunol., 2013, 97(1), 128-139.
[10]
Parker, W.; Hornik, C.D.; Bilbo, S.; Holzknecht, Z.E.; Gentry, L.; Rao, R.; Lin, S.S.; Herbert, M.R.; Nevison, C.D. The role of oxidative stress, inflammation and acetaminophen exposure from birth to early childhood in the induction of autism. J. Int. Med. Res., 2017, 45(2), 407-438.
[11]
Andrade, C. Use of acetaminophen (paracetamol) during pregnancy and the risk of autism spectrum disorder in the offspring. J. Clin. Psych., 2016, 77(2), e152-e154.
[12]
Klopčič, I.; Markovič, T.; Mlinarič-Raščan, I.; Sollner, D.M. Endocrine disrupting activities and immunomodulatory effects in lymphoblastoid cell lines of diclofenac, 4-hydroxydiclofenac and paracetamol. Toxicol. Lett., 2018, 294, 95-104.
[13]
Boeynaems, J.M. Van sande, J.; Dumont, J.E. Blocking of dog thyroid secretion in vitro by inhibitors of prostaglandin synthesis. Biochem. Pharmacol., 1975, 24(13-14), 1333-1337.
[14]
Jaeschke, H.; Xie, Y.; McGill, M.R. Acetaminophen-induced liver injury: From animal models to humans. J. Clin. Transl. Hepatol., 2014, 2(3), 153-161.
[15]
Karimi, K.; Keßler, T.; Thiele, K.; Ramisch, K.; Erhardt, A.; Huebener, P.; Barikbin, R.; Arck, P.; Tiegs, G. Prenatal acetaminophen induces liver toxicity in dams, reduces fetal liver stem cells, and increases airway inflammation in adult offspring. J. Hepatol., 2015, 62(5), 1085-1091.
[16]
McGreal, S.R.; Bhushan, B.; Walesky, C.; McGill, M.R.; Lebofsky, M.; Kandel, S.E.; Winefield, R.D.; Jaeschke, H.; Zachara, N.E.; Zhang, Z.; Tan, E.P.; Slawson, C.; Apte, U. Modulation of O-GlcNAc levels in the liver impacts acetaminophen-induced liver injury by affecting protein adduct formation and glutathione synthesis. Toxicol. Sci., 2018, 162(2), 599-610.
[17]
Hira, K.; Sultana, V.; Ara, J.; Haque, S.E. Protective role of Sargassum species in liver and kidney dysfunctions and associated disorders in rats intoxicated with carbon tetrachloride and acetaminophen. Pak. J. Pharm. Sci., 2017, 30(3), 721-728.
[18]
Hanafy, A.; Aldawsari, H.M.; Badr, J.M.; Ibrahim, A.K.; Abdel-Hady, S.E.S. Evaluation of hepatoprotective activity of adansonia digitata extract on acetaminophen-induced hepatotoxicity in rats. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-7.
[19]
Larrey, D.; Letteron, P.; Foliot, A.; Descatoire, V.; Degott, C.; Geneve, J.; Tinel, M.; Pessayre, D. Effects of pregnancy on the toxicity and metabolism of acetaminophen in mice. J. Pharmacol. Exp. Ther., 1986, 237(1), 283-291.
[20]
Lin, Z.; Wu, F.; Lin, S.; Pan, X.; Jin, L.; Lu, T.; Shi, L.; Wang, Y.; Xu, A.; Li, X. Adiponectin protects against acetaminophen-induced mitochondrial dysfunction and acute liver injury by promoting autophagy in mice. J. Hepatol., 2014, 61(4), 825-831.
[21]
Reshi, M.S.; Shrivastava, S.; Jaswal, A.; Sinha, N.; Uthra, C.; Shukla, S. Gold nanoparticles ameliorate acetaminophen induced hepato-renal injury in rats. Exp. Toxicol. Pathol., 2017, 69(4), 231-240.
[22]
Fu, T.; Wang, S.; Liu, J.; Cai, E.; Li, H.; Li, P.; Zhao, Y. Protective effects of α-mangostin against acetaminophen-induced acute liver injury in mice. Eur. J. Pharmacol., 2018, 827, 173-180.
[23]
Williams, C.D.; Jaeschke, H. Role of the innate and adaptive immunity during drug-induced liver injury. Toxicol. Res., 2012, 44(1), 161-170.
[24]
Malik, R.; Hodgson, H. The relationship between the thyroid gland and the liver. Q. J. Med., 2002, 95(9), 559-569.
[25]
Yao, X.; Hou, S.; Zhang, D.; Xia, H.; Wang, Y-C.; Jiang, J.; Yin, H.; Ying, H. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell & Biosci., 2014, 4, 38.
[26]
Ahmed, R.G. Maternal hypothyroidism and fetal hepatic diseases: ongoing debates and key issues. ARC J. Pharmac. Sciences, 2018, 4(1), 20-24.
[27]
Ahmed, O.M.; El-Gareib, A.W.; El-Bakry, A.M.; Abd El-Tawab, S.M.; Ahmed, R.G. Thyroid hormones states and brain development interactions. Int. J. Dev. Neurosci., 2008, 26(2), 147-209.
[28]
Ahmed, R.G.; El-Gareib, A.W.; Incerpi, S. Lactating PTU exposure: II- Alters thyroid-axis and prooxidant-antioxidant balance in neonatal cerebellum. Int. Res. J. Natural Sciences, 2014, 2(1), 1-20.
[29]
El-bakry, A.M.; El-Ghareeb, A.W.; Ahmed, R.G. Comparative study of the effects of experimentally-induced hypothyroidism and hyperthyroidism in some brain regions in albino rats. Int. J. Dev. Neurosci., 2010, 28, 371-389.
[30]
Ahmed, R.G. Gestational caffeine exposure acts as a fetal thyroid-cytokine disruptor by activating caspase-3/BAX/Bcl-2/Cox2/ NF-κB at ED 20. Toxicol. Res. (Camb.), 2019, 8(2), 196-205.
[31]
Ahmed, O.M.; Abd El-Tawab, S.M.; Ahmed, R.G. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I- The development of the thyroid hormones-neurotransmitters and adenosinergic system interactions. Int. J. Dev. Neurosci., 2010, 28(6), 437-454.
[32]
Ahmed, O.M.; Ahmed, R.G.; El-Gareib, A.W.; El-Bakry, A.M.; Abd El-Tawab, S.M. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II-The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int. J. Dev. Neurosci., 2012, 30(6), 517-537.
[33]
Ahmed, R.G. Perinatal 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure alters developmental neuroendocrine system. Food Chem. Toxicol., 2011, 49(6), 1276-1284.
[34]
Ahmed, R.G. Early weaning PCB 95 exposure alters the neonatal endocrine system: Thyroid adipokine dysfunction. J. Endocrinol., 2013, 219(3), 205-215.
[35]
Ahmed, R.G. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem. Toxicol., 2016, 95, 168-174.
[36]
Ahmed, R.G. Gestational dexamethasone alters fetal neuroendocrine axis. Toxicol. Lett., 2016, 258, 46-54.
[37]
Ahmed, R.G.; Abdel-Latif, M.; Ahmed, F. Protective effects of GM-CSF in experimental neonatal hypothyroidism. Int. Immunopharmacol., 2015, 29(2), 538-543.
[38]
Ahmed, R.G.; Abdel-Latif, M.; Mahdi, E.; El-Nesr, K. Immune stimulation improves endocrine and neural fetal outcomes in a model of maternofetal thyrotoxicosis. Int. Immunopharmacol., 2015, 29(2), 714-721.
[39]
Ahmed, R.G.; El-Gareib, A.W.; Shaker, H.M. Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokine dysfunction. Life Sciences., 2018, 192, 213-220.
[40]
Ahmed, R.G.; El-Ghareib, A.W. Maternal carbamazepine alters fetal neuroendocrine-cytokine axis. Toxicol., 2017, 382, 59-66.
[41]
Ahmed, R.G.; Incerpi, S. Gestational doxorubicin alters fetal thyroid-brain axis. Int. J. Dev. Neurosci., 2013, 31(2), 96-104.
[42]
Ahmed, R.G.; Incerpi, S.; Ahmed, F.; Gaber, A. The developmental and physiological interactions between free radicals and antioxidant: Effect of environmental pollutants. J. Natural Sci. Res., 2013, 3(13), 74-110.
[43]
Ahmed, R.G.; Walaa, G.H.; Asmaa, F.S. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicol. Ind. Health J., 2018, 34(6), 397-407.
[44]
Pingili, R.B.; Pawar, A.K.; Challa, S.R. Systemic exposure of paracetamol (acetaminophen) was enhanced by quercetin and chrysin co-administration in Wistar rats and in vitro model: Risk of liver toxicity. Drug Dev. Ind. Pharm., 2015, 41(11), 1793-1800.
[45]
Dean, A.; van den Driesche, S.; Wang, Y.; McKinnell, C.; Macpherson, S.; Eddie, S.L.; Kinnell, H.; Hurtado-Gonzalez, P.; Chambers, T.J.; Stevenson, K. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences. Sci. Rep., 2016, 6, 19789.
[46]
Reitman, S.; Frankel, S. A colourimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-65.
[47]
Kind, P.R.N. King, E.G. Estimation of plasma phosphate by determination of hydrolysed phenol with amino-antipyrine. J. Clin. Path., 1954, 7(4), 322-326.
[48]
Doumas, B.T.; Watson, W.A.; Biggs, H.G. Determination of serum albumin. J. Clin. Chem. Acta., 1971, 7(31), 87-89.
[49]
Bancroft, J.D.; Gamble, M. Theory and practice of histological techniques. 6thed. Philadelphia, PA. Churchill Livingstone/Elsevier., 2008.
[50]
Koster, J.F.; Biermond, P.; Swaak, A.J.G. Intracellular and extracellular sulphhydryl levels in rheumatoid arthritis. Ann. Rheum. Dis., 1986, 45(1), 44-46.
[51]
Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61(5), 882-888.
[52]
Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillette, J.R. Bromobenzene induced liver necrosis: Protective role of glutathione and evidence for 3,4‐bromobenzeneoxide as the hepatotoxic intermediate. Pharmacol., 1974, 11(3), 151-169.
[53]
Pinto, R.E.; Bartley, W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem., 1989, 112(1), 109-115.
[54]
Sedlak, I.; Lindsay, R.H. Estimation of total, protein-bound and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968, 25, 192-205.
[55]
Cohen, C.; Dembiec, D.; Marcus, J. Measurement of catalase activity in tissue extracts. Anal. Biochem., 1970, 34, 30-38.
[56]
Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol., 1990, 186, 421-431.
[57]
Dutta, A.; Sarkar, D.; Gurib-Fakim, A.; Mandal, C.; Chatterjee, M. In vitro and in vivo activity of aloe vera leaf exudate in experimental visceral leishmaniasis. Parasitol. Res., 2008, 102(6), 1235-1242.
[58]
Sergiev, I.; Alexieva, V.; Karanov, E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Cr. Acad. Bulg. Sci.., 1997, 51, 121-124.
[59]
Roa, M.; Blane, K.; Zonneberg, M. One-way analysis, version 1a(c). pc-stat; University of Georgia: Athens, USA, 1985.
[60]
Candelotti, E.; De Vito, P.; Ahmed, R.G.; Luly, P.; Davis, P.J.; Pedersen, J.Z.; Lin, H-Y.; Incerpi, S. Thyroid hormones crosstalk with growth factors: Old facts and new hypotheses. Immun. Endoc. & Metab. Agents in Med. Chem., 2015, 15(1), 71-85.
[61]
Van Herck, S.L.J.; Geysens, S.; Bald, E.; Chwatko, G.; Delezie, E.; Dianati, E.; Ahmed, R.G.; Darras, V.M. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues. Endocrinology, 2013, 218(1), 105-115.
[62]
Guyton, A.C.; Hall, J.F. Textbook of medical physiol, 10th ed; W.B. Saunders Comp. Philadeliphia, 2002.
[63]
Sebe, A.; Satar, S.; Sari, A. Thyroid storm induced by aspirin intoxication and the effect of hemodialysis: A case report. Adv. Ther., 2004, 21(3), 173-177.
[64]
Forfar, J.C.; Pottage, A.; Toft, A.D.; Lrvine, W.J.; Clements, J.A.; Prwscott, L.F. Paracetamol pharmacokinetics in thyroid disease. Eur. J. Clin. Pharmacol., 1980, 18(3), 269-273.
[65]
Rodighiero, V. Drug pharmacokinetics in thyroid dysfunction. Minerva Endocrinol., 1985, 10, 97-113.
[66]
Ishihara, A.; Sawatsubashi, S.; Yamauchi, K. Endocrine disrupting chemicals: Interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol. Cell. Endocrinol., 2003, 199(31), 105-117.
[67]
Huang, M.J.; Liaw, Y.F. Clinical associations between thyroid and liver diseases. J. Gastroenterol. Hepatol., 1995, 10(3), 344-350.
[68]
Rabiul, H.; Subhasish, M.; Sinha, S.; Roy, M.G.; Sinha, D.; Gupta, S. Hepatoprotective activity of Clerodendron inerme against paracetamol induced hepatic injury in rats for pharmaceutical product. Int. J. Drug Dev. Res., 2011, 3(1), 118-126.
[69]
Kołaciński, Z.; Ruciński, P. Paracetamol: Therapeutic action, pathogenesis and treatment of acute poisoning complicated by severe liver damage. Przegl. Lek., 2003, 60, 218-222.
[70]
Mitchell, J.R.; Jollow, D.J.; Potter, W.Z.; Gillette, J.R.; Brodie, B.B. Acetaminophen induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther., 1973, 187(1), 211-217.
[71]
Petrulea, M.S.; Muresan, A.; Duncea, I. Oxidative stress and antioxidant status in hypo- and hyperthyroidism. In: The Antioxidant Enzyme.Chapter 8; El-Missiry, M.A., Ed.; Croatia: Intech Open Access Publisher, 2012; pp. 197-236.
[72]
Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Qi, W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species. A review of the evidence. Cell Biochem. Biophys., 2001, 34(2), 237-256.
[73]
Park, B.K.; Kitteringham, N.R.; Maggs, J.L.; Pirmohamed, M.; Williams, D.P. The role of metabolic activation in drug-induced hepatotoxicity. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 177-202.
[74]
Guzy, J.; Choranová, Z.; Mareková, M.; Chavková, Z.; Tomečková, V.; Mojžišová, G.; Kušnír, J. Effect of quercetin on paracetamol induced rat liver mitochondrial dysfunction. Biologia (Bratisl.), 2004, 59(3), 399-403.
[75]
Xie, Y.; McGill, M.R.; Dorko, K.; Kumer, S.C.; Schmitt, T.M.; Forster, J.; Jaeschke, H. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol. Appl. Pharmacol., 2014, 279(3), 266-274.
[76]
Jaeschke, H.; Lemasters, J.J. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterol., 2003, 125(4), 1246-1257.
[77]
Masubuchi, Y.; Suda, C.; Horie, T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. Hepatol., 2005, 42(1), 110-116.
[78]
Ramachandran, A.; Lebofsky, M.; Baines, C.P.; Lemasters, J.J.; Jaeschke, H. Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic. Res., 2011, 45(2), 156-164.
[79]
Jaeschke, H.; Williams, C.D.; Ramachandran, A.; Bajt, M.L. Acetaminophen hepatotoxicity and repair: The role of sterile inflammation and innate immunity. Liver Int., 2012, 32(1), 8-20.
[80]
Hanawa, N.; Shinohara, M.; Saberi, B.; Gaarde, W.A.; Han, D.; Kaplowitz, N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. Biol. Chem., 2008, 283(20), 13565-13577.
[81]
Zhou, Y.D.; Hou, J.G.; Liu, W.; Ren, S.; Wang, Y.P.; Zhang, R.; Chen, C.; Wang, Z.; Li, W. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis. Int. Immunopharmacol., 2018, 59, 21-30.
[82]
Bajt, M.L.; Lawson, J.A.; Vonderfecht, S.L.; Gujral, J.S.; Jaeschke, H. Protection against Fas receptor-mediated apoptosis in hepatocytes and nonparenchymal cells by a caspase-8 inhibitor in vivo: Evidence for a postmitochondrial processing of caspase-8. Toxicol. Sci., 2000, 58(1), 109-117.
[83]
Schattenberg, J.M.; Galle, P.R.; Schuchmann, M. Apoptosis in liver disease. Liver Int., 2006, 26, 904-911.
[84]
Lawson, J.A.; Farhood, A.; Hopper, R.D.; Bajt, M.L.; Jaeschke, H. The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol. Sci., 2000, 54(2), 509-516.
[85]
Martin-Murphy, B.V.; Holt, M.P.; Ju, C. The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice. Toxicol. Lett., 2010, 192(3), 387-394.
[86]
McGill, M.R.; Williams, C.D.; Xie, Y.; Ramachandran, A.; Jaeschke, H. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol., 2012, 264(3), 387-394.
[87]
Imaeda, A.B.; Watanabe, A.; Sohail, M.A.; Mahmood, S.; Mohamadnejad, M.; Sutterwala, F.S.; Flavell, R.A.; Mehal, W.Z. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest., 2009, 119(2), 305-314.
[88]
Liu, Z.X.; Han, D.; Gunawan, B.; Kaplowitz, N. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatol., 2006, 43(6), 1220-1230.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 5
Year: 2019
Page: [705 - 714]
Pages: 10
DOI: 10.2174/1871530319666190212165603
Price: $65

Article Metrics

PDF: 26
HTML: 2

Special-new-year-discount