Cancer Therapy Based on Smart Drug Delivery with Advanced Nanoparticles

Author(s): Xiangqi Kong, Yi Liu, Xueyan Huang, Shuai Huang, Feng Gao, Pengfei Rong, Shengwang Zhang, Kexiang Zhang, Wenbin Zeng*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cancer, as one of the most dangerous disease, causes millions of deaths every year. The main reason is the absence of an effective and thorough treatment. Drug delivery systems have significantly reduced the side-effect of chemotherapy. Combined with nanotechnology, smart drug delivery systems including many different nanoparticles can reduce the side-effect of chemotherapy better than traditional drug delivery systems.

Methods: In this article, we will describe in detail the different kinds of nanoparticles and their mechanisms emphasizing the triggering factors in drug delivery. Besides, the application of smart drug delivery systems in imaging will be introduced.

Results: Combined with nanotechnology, smart drug delivery systems including many different nanoparticles can reduce the side-effect of chemotherapy better than traditional drug delivery systems.

Conclusion: Despite considerable progress in nanoparticle research over the past decade, such as smart drug delivery systems for the treatment of cancer, molecular imaging probes and the like. The range of nanoparticles used in multifunction systems for imaging and drug delivery continues to grow and we expect this dilatation to continue. But to make nanoparticles truly a series of clinical products to complement and replace current tools, constant exploration efforts and time are required. Overall, the future looks really bright.

Keywords: Drug delivery, nanoparticles, molecular imaging, cancer therapy, theranostics, hemotherapy, hormone therapy surgery, immunotherapy and radiotherapy.

[1]
Liu, M.; Tang, M.; Li, M.; Gao, F.; Shi, C.; Hou, J.; Zeng, W.B. A new window for diagnosis and evaluation of cancer. Anticancer. Agents Med. Chem., 2016, 16, 1529-1540.
[2]
Saranath, D.; Khanna, A. Current status of cancer burden: Global and Indian scenario. Biomed. Res. J., 2014, 1, 1-5.
[3]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61, 69-90.
[4]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Threestep tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology: Formulation development and in vitro anticancer activity. J. Pharm. Biopharm., 2008, 70, 66-74.
[5]
Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric flms, rods, and wafers. J. Control. Release, 2012, 159, 14-26.
[6]
Losic, D.; Aw, M.S.; Santos, A.; Gulati, K.; Bariana, M. Titania nanotube arrays for local drug delivery: Recent advances and perspectives. Expert Opin. Drug Deliv., 2015, 12, 103-127.
[7]
Losic, D.; Simovic, S. Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin. Drug Deliv., 2009, 6, 1363-1381.
[8]
Panyam, J.; Zhou, W.Z.; Prabha, S. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: Implications for drug and gene delivery. FASEB J., 2002, 16, 1217-1226.
[9]
Portney, N.G.; Ozkan, M. Nano-oncology: Drug delivery, imaging, and sensing. Bioanal. Chem., 2006, 384, 620-630.
[10]
Caraglia, M.; De Rosa, G.; Salzano, G.; Santini, D.; Lamberti, M.; Sperlongano, P.; Lombardi, A.; Abbruzzese, A.; Addeo, R. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier. Curr. Cancer Drug, 2012, 12, 186-196.
[11]
Cui, W.; Li, J.; Decher, G. Self-assembled smart nanocarriers for targeted drug delivery. Adv. Mater., 2015, 28, 1302-1311.
[12]
Zhou, F.; Teng, F.; Deng, P.; Meng, N.; Song, Z.; Feng, R. Recent progress of nano-drug delivery system for liver cancer treatment. Anticancer. Agents Med. Chem., 2017, 17, 1884-1897.
[13]
Chen, Y.C.; Lo, C.L.; Lin, Y.F.; Hsiue, G.H. Rapamycin encapsulated in dual-responsive micelles for cancer therapy. Biomaterials, 2013, 34, 1115-1127.
[14]
Kaur, H.; Desai, S.D.; Kumar, V.; Rathi, P.; Singh, J. Heterocyclic drug-polymer conjugates for cancer targeted drug delivery. Anticancer. Agents Med. Chem., 2016, 16, 1355-1377.
[15]
Van, D.; McGuire, T.; Langer, R. Small scale systems for in vivo drug delivery. Nat. Biotechnol., 2003, 21, 1184-1191.
[16]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8, 1112-1120.
[17]
Farokhzad, C.O.C.; Teply, J.; Sherifi, B.A.; Jon, I.; Kantoff, S.; Richie, P.W.; Langer, J.P. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103, 6315-6320.
[18]
Leroux, J.C.; Deolker, E.; Gurmy, R.; Nenita, S. Micro encapsulations, methods and industrial application; Dekker: New York, 1996, pp. 537-574.
[19]
Jain, K.K. Advances in the field of nano-oncology. BMC Med., 2010, 8, 83.
[20]
Ng, K.K.; Lovell, J.F.; Zheng, G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc. Chem. Res., 2011, 44, 1105-1113.
[21]
Allison, B.A.; Waterfield, E.; Richter, A.M.; Levy, J.G. The effect of plasma lipoproteins on in vivo tumor photosensitization with benzoporphyrin derivative. J. Photoch. Photobio., 2010, 54, 709-715.
[22]
Zheng, G.; Li, H.; Zhang, M.; Sissel, L.; Britton, C.; Glickson, J.D. Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer. Bioconjug. Chem., 2002, 13, 392-396.
[23]
Song, L.; Li, H.; Sunar, U.; Chen, J.; Corbin, I.; Yodh, A.G. Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment. Int. J. Nanomedicine, 2007, 2, 767-774.
[24]
Wang, R.N.; Gu, X.C.; Zhou, J.P.; Shen, L.J.; Yin, L.F.; Hua, P.Y.; Ding, Y. Green design “bioinspired disassembly-reassembly strategy” applied for improved tumor-targeted anticancer drug delivery. J. Control. Release, 2016, 235, 134-146.
[25]
Silva, R.A.G.D.; Huang, R.; Morris, J.; Fang, J.; Gracheva, E.O.; Ren, G. Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc. Natl. Acad. Sci. USA, 2008, 105, 12176-12181.
[26]
Bijsterbosch, M.K.; Van Berkel, T.J. Lactosylated high density lipoprotein: A potential carrier for the site-specific delivery of drugs to parenchymal liver cells. Mol. Pharmacol., 1992, 41, 404-411.
[27]
Mcconathy, W.J.; Nair, M.P.; Paranjape, S.; Mooberry, L.; Lacko, A.G. Evaluation of synthetic/reconstituted high-density lipoproteins as delivery vehicles for paclitaxel. Anticancer Drugs, 2008, 19, 183-188.
[28]
Cao, W.; Ng, K.K.; Corbin, I.; Zhang, Z.; Ding, L.; Chen, J. Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high density lipoprotein nanoparticles for tumor imaging. Bioconjug. Chem., 2009, 20, 2023-2031.
[29]
Charsteen, N.D. Ferritin. Uptake, storage and release of iron. Met. Ions Biol. Syst., 1998, 35, 479-514.
[30]
Li, L.; Fang, C.J.; Ryan, J.C. Binding and uptake of H-ferritin are mediated by human transferring receptor-1. Proc. Natl. Acad. Sci. USA, 2010, 107, 3505-3510.
[31]
He, D.; Marles-Wright, J. Ferritin family proteins and their use in bionanotechnology. N. Biotechnol., 2015, 32, 651-657.
[32]
James, F. Hainfeld. Uranium-loaded apoferritin with antibodies attached: Molecular design for uranium neutron-capture therapy. Acad. Sci. USA, 1992, 89, 11064-11068.
[33]
Yang, Z.; Wang, X.; Diao, H.; Zhang, J.; Li, H.; Sun, H. Encapsulation of platinum anticancer drugs by apoferritin. Chem. Commun., 2007, 33, 3453-3455.
[34]
Zhen, Z.; Tang, W.; Chen, H.; Lin, X.; Todd, T.; Wang, G. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS. Nanov., 2013, 7, 4830-4837.
[35]
Yao, H.C.; Zhao, W.W.; Zhang, S.G.; Guo, X.F.; Li, Y.; Du, B. Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J. Mater. Chem. B, 2018, 6, 3107-3115.
[36]
Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132, 171-183.
[37]
Elsadek, B.; Kratz, F. Impact of albumin on drug delivery-new applications on the horizon. J. Control. Release, 2011, 157, 4-28.
[38]
Dadparvar, M.; Wagner, S.; Wien, S.; Kufleitner, J.; Worek, F. HI 6 human serum albumin nanoparticles-development and transport over an in vitro blood-brain barrier model. Toxicol. Lett., 2011, 206, 60-66.
[39]
Li, X.; Mu, J.; Liu, F.; Tan, E.W.; Khezri, B.; Webster, R.D. Human transport protein carrier for controlled photoactivation of antitumor prodrug and real-time intracellular tumor imaging. Bioconjug. Chem., 2015, 26, 955-961.
[40]
Heyen, U.; Schuler, D. Growth and magnetosome formation by microaerophilic magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol., 2003, 61, 536-544.
[41]
Bazylinski, D.A.; Frankel, R. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol., 2004, 2, 217-230.
[42]
Bazylinski, D.A.; Frankel, R.B. Biologically controlled mineralization in prokaryotes. Rev. Mineral. Geochem., 2003, 54, 217-247.
[43]
Zhang, F.; Zhao, L.J.; Wang, S.M.; Yang, J.; Lu, G.H.; Luo, N.N.; Gao, X.Y.; Ma, G.H.; Xie, H.Y.; Wei, W. Construction of a biomimetic magnetosome and its application as a SiRNA carrier for high-performance anticancer therapy. Adv. Funct. Mater., 2017, 1703326.
[44]
Lee, S.; Ahn, J.H.; Choi, H.; Seo, J.M.; Cho, D.; Koo, K. Natural magnetic nanoparticle containing droplet for smart drug delivery and heat treatment. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2015, 2015, 3541-3544.
[45]
Sun, J.B.; Duan, J.H.; Dai, S.L.; Ren, J.; Zhang, Y.D.; Tian, J.S. in vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett., 2007, 258, 109-117.
[46]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56, 185-229.
[47]
Nagaraju, K.; Reddy, R.; Reddy, N. A review on protein functionalized carbon nanotubes. J. Appl. Biomater. Funct. Mater., 2015, 13, 301-312.
[48]
Pondman, K.M.; Paudyal, B.; Sim, R.B.; Kaur, A.; Kouser, L.; Tsolaki, A.G. Pulmonary surfactant protein SP-D opsonises carbon nanotubes and augments their phagocytosis and subsequent pro-inflammatory immune response. Nanoscale, 2017, 19, 1097-1109.
[49]
Guo, Q. Carbon nanotubes-based drug delivery to cancer and brain. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2017, 37, 635-641.
[50]
Shao, W. A new carbon nanotube-based breast cancer drug delivery system: Preparation and in vitro analysis using paclitaxel. Cell Biochem. Biophys., 2015, 71, 1405-1414.
[51]
Romano-Feinholz, S. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma. Int. J. Nanomedicine, 2017, 12, 6005-6026.
[52]
Bilan, R. Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug. Chem., 2015, 26, 609-624.
[53]
Pohanka, M. Quantum dots in the therapy: Current trends and perspectives. Mini Rev. Med. Chem., 2017, 17, 650-656.
[54]
Sarkar, N. Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. Eur. J. Pharm. Sci., 2017, 109, 359-371.
[55]
Haine, A.T.; Niidome, T. Quantum dots in the therapy: Current trends and perspectives. Chem. Pharm. Bull. (Tokyo), 2017, 65, 625-628.
[56]
Zhang, W.J.; Hong, C.Y.; Pan, C.Y. Efficient fabrication of photosensitive polymeric nano-objects via an ingenious formulation of RAFT dispersion polymerization and their application for drug delivery. Biomacromolecule, 2017, 18, 1210-1217.
[57]
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc., 2014, 136, 7317-7326.
[58]
Song, Z.; Liu, Y.; Shi, J.; Ma, T.; Zhang, Z.; Ma, H. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mat. Sci. End. C-Mater., 2018, 83, 90-98.
[59]
Wáng, Y.J.; Choi, Y.; Chen, Z.; Laurent, S.; Gibbs, S.L. Molecular imaging: from bench to clinic. J. Mater. Chem. B, 2015, 3, 8383-8393.
[60]
Wang, Y.X.J.; Wang, D.W.; Zhu, X.M.; Zhao, F.; Leung, K.C. Carbon coated superparamagnetic iron oxide nanoparticles for sentinel lymph nodes mapping. Quant. Imaging Med. Surg., 2012, 2, 53-56.
[61]
Rieter, W.J.; Taylor, K.M.; An, H.; Weili, L.A.; Wenbin, L. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc., 2006, 128, 9024-9025.
[62]
Kerbellec, N.; Catala, L.; Daiguebonne, C.; Gloter, A.; Stephan, O.; Bünzli, J.C. Luminescent coordination nanoparticles. New J. Chem., 2008, 32, 584-587.
[63]
Aimé, C.; Nishiyabu, R.; Gondo, R.; Kimizuka, N. Switching on luminescence in nucleotide/lanthanide coordination nanoparticles via synergistic interactions with a cofactor ligand. Chem. Eur. J., 2010, 16, 3604-3607.
[64]
Imaz, I.; Hernando, J.; Ruiz-Molina, D.; Maspoch, D. Metal-organic spheres as functional systems for guest encapsulation. Angew. Chem. Int. Ed., 2010, 48, 2325-2329.
[65]
Yan, X.; Zhu, P.; Fei, J.; Li, J. Self-assembly of peptide-inorganic hybrid spheres for adaptive encapsulation of guests. Adv. Mater., 2010, 22, 1283-1287.
[66]
Rowe, M.D.; Thamm, D.H.; Kraft, S.L.; Boyes, S.G. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecule, 2009, 10, 983-993.
[67]
Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A. Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J. Am. Chem. Soc., 2009, 131, 2151-2158.
[68]
Taylorpashow, K.M.L.; Rocca, J.D.; Xie, Z.; Tran, S.; Lin, W. Post-synthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 2009, 131, 14261-14263.
[69]
Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A. Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J. Am. Chem. Soc., 2009, 131, 2151-2158.
[70]
Culver, J.; Akers, W.; Achilefu, S. Multimodality molecular imaging with combined optical and SPECT/PET modalities. J. Nucl. Med., 2008, 49, 169-172.
[71]
Lee, J.H.; Park, G.; Hong, G.H.; Choi, J.; Choi, H.S. Design considerations for targeted optical contrast agents. Imaging Med. Surg., 2012, 2, 266-273.
[72]
Park, K. Polysaccharide-based near-infrared fluorescence nanoprobes for cancer diagnosis. Imaging Med. Surg., 2012, 2, 106-113.
[73]
Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun., 2012, 3, 618-628.
[74]
Yao, J.; Wang, L.V. Photoacoustic tomography: Fundamentals, advances and prospects. Contrast Media. Mol., 2011, 6, 332-345.
[75]
Kim, J.; Park, S.; Jung, Y.; Chang, S.; Park, J.; Zhang, Y. Programmable real-time clinical photoacoustic and ultrasound imaging system. Sci. Rep-UK, 2016, 6, 35137-35148.
[76]
Zackrisson. S, van de Ven S.M.W.Y, Gambhir, S.S. Light in and sound out: Emerging translational strategies for photoacoustic imaging. Cancer Res., 2014, 74, 979-1004.
[77]
Upputuri, P.K.; Pramanik, M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: A review. J. Biomed. Opt., 2017, 22, 41006.
[78]
Agarwal, A.; Huang, S.W.; O’Donnell, M.; Day, K.C. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys., 2007, 102, 064701-064704.
[79]
De, Z.A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol., 2008, 3, 557-562.
[80]
Moon, H.; Kumar, D.; Kim, H.; Sim, C.; Chang, J.H.; Kim, J.M. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano, 2015, 9, 2711-2719.
[81]
Liu, Y.; Kang, N.; Lv, J.; Zhou, Z.; Zhao, Q.; Ma, L. Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high‐efficiency upconversion nanocomposites. Adv. Mater., 2016, 28, 6411-6419.
[82]
Shashkov, E.V.; Everts, M.; Galanzha, E.I.; Zharov, V.P. Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett., 2008, 8, 3953-3958.
[83]
Bornhop, D.J.; Geng, K.; Stoica, G.; Wang, L.V.; Wegiel, M.A.; Wang, X. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt. Lett., 2004, 29, 730-732.
[84]
Cheng, L.; He, W.; Gong, H.; Wang, C.; Chen, Q.; Cheng, Z. Pegylated micelle nanoparticles encapsulating a non‐fluorescent near‐infrared organic dye as a safe and highly‐effective photothermal agent for in vivo cancer therapy. Adv. Funct. Mater., 2013, 23, 5893-5902.
[85]
Park, J.; Kim, K.; Jung, Y.; Kim, J. Cover picture: Metal nanoparticles for virus detection. ChemNanoMat, 2016, 2, 922-922.
[86]
Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods, 2016, 13, 639-650.
[87]
Hua, G.; Ziliang, D.; Yumeng, L.; Shengnan, Y.; Liang, C.; Wenyao, X. Engineering of multifunctional nanomicelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv. Funct. Mater., 2015, 24, 6492-6502.
[88]
Guo, M.; Mao, H.; Li, Y.; Zhu, A.; He, H.; Yang, H. Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials, 2014, 35, 4656-4666.
[89]
Aimé, C.; Nishiyabu, R.; Gondo, R.; Kimizuka, N. Switching on luminescence in nucleotide/lanthanide coordination nanoparticles via synergistic interactions with a cofactor ligand. Chem-Eur. J., 2010, 16, 3604-3607.
[90]
Wang, Y.X. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg., 2011, 1, 35-40.
[91]
Banci, L.; Bertini, I.; Luchinat, C. Nuclear and electron relaxation: the magnetic nucleus-unpaired electron coupling in solution; VCH: Germany, 1991.
[92]
Taylor, K.M.; Jin, A.; Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew. Chem. Int. Ed., 2008, 47, 7722-7725.
[93]
Hatakeyama, W.; Sanchez, T.J.; Rowe, M.D.; Serkova, N.J.; Liberatore, M.W.; Boyes, S.G. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: Manipulation of particle size and magnetic resonance imaging capability. ACS Appl. Mater. Interfaces, 2011, 3, 1502-1510.
[94]
Lee, S.; Chen, X. Dual-modality probes for in vivo molecular imaging. Mol. Imaging, 2009, 8, 87-100.
[95]
Thorek, D.L.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34, 23-38.
[96]
Pathak, A.P.; Gimi, B.; Glunde, K.; Ackerstaff, E.; Artemov, D.; Bhujwalla, Z.M. Molecular and functional imaging of cancer: Advances in MRI and MRS. Methods Enzymol., 2004, 386, 3-60.
[97]
Moore, A.; Marecos, E.; Bogdanov, A., Jr; Weissleder, R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology, 2000, 214, 568-574.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 6
Year: 2019
Page: [720 - 730]
Pages: 11
DOI: 10.2174/1871520619666190212124944
Price: $58

Article Metrics

PDF: 34
HTML: 2
EPUB: 1