Two Novel Tri-Aryl Derivatives Attenuate the Invasion-Promoting Effects of Stromal Mesenchymal Stem Cells on Breast Cancer

Author(s): Khadijeh Moradi, Farnaz Barneh, Saeed Irian, Mohsen Amini, Raheleh Moradpoor, Amir Amanzadeh, Samira Choopani, Hamzeh Rahimi, Tayebeh Ghodselahi, Massoud M. Boujar, Mona Salimi*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: The concept of Epithelial-Mesenchymal Transition (EMT) to promote carcinoma progression has been recognized as a venue for research on novel anticancer drugs. Triaryl template-based structures are one of the pivotal structural features found in a number of compounds with a wide variety of biological properties including anti-breast cancer. Among the various factors triggering EMT program, cyclooxygenase-2 (COX-2), NF-κB as well as the transforming growth factor-beta (TGF-β) have been widely investigated.

Objective: Here, we aim to investigate the effect of two novel compounds A and B possessing triaryl structures, which interact with both COX-2 and TGF-β active sites and suppress NF-κB activation, on EMT in a co-culture system with breast cancer and stromal cells.

Methods: MDA-MB-231 and bone-marrow mesenchymal stem (BM-MS) cells were co-cultured in a trans-well plate. Migration, matrigel-based invasion and colony formation in soft agar assays along with Real- time PCR and Western blot analysis were performed to examine the effect of compounds A and B on the invasive properties of MDA-MB-231 cells after 72 hours of co-culturing with BM-MSCs. In addition, TGF-beta interaction was investigated by Localized Surface Plasmon Resonance (LSPR).

Results: BM-MSCs enhanced migration, invasion and anchorage-independent growth of the co-cultured MDAMB- 231 cells. A reduction in E-cadherin level concomitant with an increase in vimentin and N-cadherin levels following the co-culture implied EMT as the underlying process. Compounds A and B inhibited invasion and anchorage-independent growth of breast cancer cells co-cultured with BM-MSCs at 10µM. The observed inhibitory effects along with an increase in E-cadherin and a reduction in vimentin and ZEB2 levels suggest that the anti-invasive properties of compounds A and B might proceed through the blockade of stromal cell-induced EMT, mediated by their interaction with TGF-beta.

Conclusion: These findings introduce compounds A and B as novel promising agents, which prevent EMT in invasive breast cancer cells.

Keywords: Breast cancer, metastasis, EMT, bone marrow mesenchymal stem cells, triaryl, localized surface plasmon resonance.

Dizon, D.S.; Krilov, L.; Cohen, E.; Gangadhar, T.; Ganz, P.A.; Hensing, T.A.; Hunger, S.; Krishnamurthi, S.S.; Lassman, A.B.; Markham, M.J. Clinical cancer advances 2016: Annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol., 2016, 34, 987-1011.
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66, 730.
Pal, S.K.; Childs, B.H.; Pegram, M. Triple negative breast cancer: Unmet medical needs. Breast Cancer Res. Treat., 2011, 125, 627-636.
Masoud, V.; Pages, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol., 2017, 8, 120-134.
Wu, Y.; Zhou, B.P. New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim. Biophys. Sin., 2008, 40, 643-650.
Berx, G.; Raspé, E.; Christofori, G.; Thiery, J.P.; Sleeman, J.P. Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin. Exp. Metastasis, 2007, 24, 587-597.
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119, 1420.
Baranwal, S.; Alahari, S.K. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem. Biophys. Res. Commun., 2009, 384, 6-11.
Guarino, M.; Rubino, B.; Ballabio, G. The role of epithelial‐mesenchymal transition in cancer pathology. Pathology, 2007, 39, 305-318.
Kim, D.H.; Xing, T.; Yang, Z.; Dudek, R.; Lu, Q.; Chen, Y.H. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: A comprehensive overview. J. Clin. Med., 2018, 7, 1.
Marrision, L.R.; Dickinson, J.M.; Fairlamb, I.J.S. Bioactive 4-substituted-6-methyl-2-pyrones with promising cytotoxicity against A2780 and K562 cell lines. Bioorg. Med. Chem. Lett., 2002, 12, 3509-3513.
Shankar, R.; Chakravarti, B.; Singh, U.S.; Ansari, M.I.; Deshpande, S.; Dhar Dwivedi, S.K.; Bid, H.K.; Konwar, R.; Kharkwal, G.; Chandra, V.; Dwivedi, A.; Hajela, K. Synthesis and biological evaluation of 3,4,6-triaryl-2-pyranones as a potential new class of anti-breast cancer agents. Bioorg. Med. Chem., 2009, 17, 3847-3856.
Rao, P.N.; Amini, M.; Li, H.; Habeeb, A.G.; Knaus, E.E. Design, synthesis, and biological evaluation of 6-substituted-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-ones: a novel class of diarylheterocyclic selective cyclooxygenase-2 inhibitors. J. Med. Chem., 2003, 46, 4872-4882.
Wiese, F.W.; Thompson, P.A.; Kadlubar, F.F. Carcinogen substrate specificity of human COX-1 and COX-2. Carcinogenesis, 2001, 22(1), 5-10.
Jendrossek, V. Targeting apoptosis pathways by Celecoxib in cancer. Cancer Lett., 2013, 332, 313-324.
Sun, Y.; Tang, X.M.; Half, E.; Kuo, M.T.; Sinicrope, F.A. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res., 2002, 62, 6323-6328.
Pai, R.; Soreghan, B.; Szabo, I.L.; Pavelka, M.; Baatar, D.; Tarnawski, A.S. Prostaglandin E2 transactivates EGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat. Med., 2002, 8, 289-293.
Dohadwala, M.; Batra, R.K.; Luo, J.; Lin, Y.; Krysan, K.; Põld, M.; Sharma, S.; Dubinett, S.M. Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. J. Biol. Chem., 2002, 277, 50828-50833.
Morgillo, F.; Bareschino, M.A.; Bianco, R.; Tortora, G.; Ciardiello, F. Primary and acquired resistance to anti-EGFR targeted drugs in cancer therapy. Differentiation, 2007, 75, 788-799.
Singh, M.M. Centchroman, a selective estrogen receptor modulator, as a contraceptive and for the management of hormone-related clinical disorders. Med. Res. Rev., 2001, 21, 302-347.
Tseng, C.H.; Li, C.Y.; Chiu, C.C.; Hu, H.T.; Han, C.H.; Chen, Y.L.; Tzeng, C.C. Combretastatin A-4 derivatives: synthesis and evaluation of 2,4,5-triaryl-1H-imidazoles as potential agents against H1299 (non-small cell lung cancer cell). Mol. Divers., 2012, 16, 697-709.
Schiffmann, S.; Ziebellm, S.; Sandner, J.; Birod, K.; Deckmann, K.; Hartmann, D.; Rode, S.; Schmidt, H.; Angioni, C.; Geisslinger, G. Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C 16: 0-ceramide. Biochem. Pharmacol., 2012, 80, 1632-1640.
Norouzi, M.; Norouzi, S.; Amini, M.; Amanzadeh, A.; Irian, S.; Salimi, M. Apoptotic effects of two cox‐2 inhibitors on breast adenocarcinoma cells through COX‐2 independent pathway. J. Cell. Biochem., 2015, 116, 81-90.
Miralinaghi, P.; Salimi, M.; Amirhamzeh, A.; Norouzi, M.; Kandelousi, H.M.; Shafiee, A.; Amini, M. Synthesis, molecular docking study, and anticancer activity of triaryl-1, 2, 4-oxadiazole. Med. Chem. Res., 2013, 22, 4253-4262.
Sun, S.Y.; Schroeder, C.P.; Yue, P.; Lotan, D.; Hong, W.K.; Lotan, R. Enhanced growth inhibition and apoptosis induction in NSCLC cell lines by combination of celecoxib and 4HPR at clinically relevant concentrations. Cancer Biol. Ther., 2005, 4, 413-419.
Ng, A.; Chai, C.; Pietschmann, E.; Lai, H.; Low, J.; Thiery, J.; Kuay, K.; Choolani, M.; Wong, M.; Matsumura, N. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis., 2013, 4, e915.
Gumbiner, B.M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol., 2005, 6, 622-634.
Zeisberg, M.; Neilson, E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest., 2011, 119, 1429.
Comijn, J.; Berx, G.; Vermassen, P.; Verschueren, K.; van Grunsven, L.; Bruyneel, E.; Mareel, M.; Huylebroeck, D.; Van Roy, F. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell, 2001, 7, 1267-1278.
Song, L.B.; Li, J.; Liao, W.T.; Feng, Y.; Yu, C.P.; Hu, L.J.; Kong, Q.L.; Xu, L.H.; Zhang, X.; Liu, W.L. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest., 2009, 119, 3626.
Güler, S.A.; Uğurlu, M.U.; Kaya, H.; Şen, S.; Nazlı, Y.; Güllüoğlu, B.M. Impact of cyclooxygenase-2 over-expression on the prognosis of breast cancer patient. Ulus. Cerrahi Derg., 2016, 32, 81-88.
Kim, Y.B.; Kim, G.E.; Cho, N.H.; Pyo, H.R.; Shim, S.J.; Chang, S.K.; Park, H.C.; Suh, C.O.; Park, T.K.; Kim, B.S. Overexpression of cyclooxygenase-2 is associated with a poor prognosis in patients with squamous cell carcinoma of the uterine cervix treated with radiation and concurrent chemotherapy. Cancer, 2002, 95, 531-539.
Cao, Y.; Prescott, S.M. Many actions of cyclooxygenase‐2 in cellular dynamics and in cancer. J. Cell. Physiol., 2002, 190, 279-286.
Gallo, O.; Franchi, A.; Magnelli, L.; Sardi, I.; Vannacci, A.; Boddit, V.; Chiarugi, V.; Masini, E. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia, 2001, 3, 53-61.
Hida, T.; Kozaki, K.I.; Muramatsu, H.; Masuda, A.; Shimizu, S.; Mitsudomi, T.; Sugiura, T.; Ogawa, M.; Takahashi, T. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin. Cancer Res., 2000, 6, 2006-2011.
Ogino, S.; Kirkner, G.J.; Nosho, K.; Irahara, N.; Kure, S.; Shima, K.; Hazra, A.; Chan, A.T.; Dehari, R.; Giovannucci, E.L. Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin. Cancer Res., 2008, 14, 8221-8227.
Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev., 2016, 35, 645-654.
Pang, M.F.; Georgoudaki, A.M.; Lambut, L.; Johansson, J.; Tabor, V.; Hagikura, K.; Jin, Y.; Jansson, M.; Alexander, J.S.; Nelson, C.M.; Jakobsson, L.; Betsholtz, C.; Sund, M.; Karlsson, M.C.I.; Fuxe, J. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene, 2016, 35, 748-760.
Wang, Y.; Zhou, B.P. Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin. J. Cancer, 2011, 30, 603-611.
Lima, J.F.; Nofech-Mozes, S.; Bayani, J.; Bartlett, J.M.S. EMT in Breast Carcinoma-A Review. J. Clin. Med., 2016, 5, 65.
Tian, M.; Schiemann, W.P. TGF-β Stimulation of EMT Programs Elicits Non-genomic ER-α. J. Cancer Metastasis Treat., 2017, 3, 150-160.
Wang, Q.; Cheng, Y.; Wang, Y.; Fan, Y.; Li, C.; Zhang, Y.; Wang, Y.; Dong, Q.; Ma, Y.; Teng, Y.; Qu, X.; Liu, Y. Tamoxifen reverses epithelial- mesenchymal transition by demethylating miR-200c in triple-negative breast cancer cells. BMC Cancer, 2017, 17, 492.
Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007, 449, 557-563.
Kudo-Saito, C. Cancer-associated mesenchymal stem cells aggravate tumor progression. Front. Cell Dev. Biol., 2015, 3, 23.
Corcoran, K.E.; Trzaska, K.A.; Fernandes, H.; Bryan, M.; Taborga, M.; Srinivas, V.; Packman, K.; Patel, P.S.; Rameshwar, P. Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One, 2008, 3, e2563.
Molloy, A.P.; Martin, F.T.; Dwyer, R.M.; Griffin, T.P.; Murphy, M.; Barry, F.P.; O’brien, T.; Kerin, M.J. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int. J. Cancer, 2009, 124, 326-332.
De Wever, O.; Pauwels, P.; De Craene, B.; Sabbah, M.; Emami, S.; Redeuilh, G.; Gespach, C.; Bracke, M.; Berx, G. Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. Histochem. Cell Biol., 2008, 130, 481-494.
Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133, 704-715.
Adhim, Z.; Matsuoka, T.; Bito, T.; Shigemura, K.; Lee, K.; Kawabata, M.; Fujisawa, M.; Nibu, K. dShirakawa, T. In vitro and in vivo inhibitory effect of three Cox-2 inhibitors and epithelial-to-mesenchymal transition in human bladder cancer cell lines. Br. J. Cancer, 2011, 105, 393-402.
Akhtar, N.; Syed, D.N.; Lall, R.K.; Mirza, B.; Mukhtar, H. Targeting epithelial to mesenchymal transition in prostate cancer by a novel compound, plectranthoic acid, isolated from. Ficus microcarpa., 2018, 57, 653-663.
Kotb, A.M.; Hierholzer, A.; Kemler, R. Replacement of E-cadherin by N-cadherin in the mammary gland leads to fibrocystic changes and tumor formation. Breast Cancer Res., 2011, 13, 104.
Chung, C.L.; Wang, S.W.; Martin, R.; Knçlker, H.J.; Kao, Y.C.; Lin, M.H.; Chen, J.J.; Huang, Y.B.; Wu, D.C.; Chen, C.L. Pentachloropseudilin inhibits transforming growth factor-b (TGF-b) activity by accelerating cell-surface type II TGF-b receptor turnover in target cells. ChemBioChem, 2018, 19, 851-864.
Zhang, Z.; Yang, C.; Wei, G.; Tuanhui, C.; Qian, T.C.; Hu, J.; Tan, Y. FOXA2 attenuates the epithelial to mesenchymal transition by regulating the transcription of E-cadherin and ZEB2 in human breast cancer. Cancer Lett., 2015, 361, 240-250.
Oba1, S.; Mizutani, T.; Suzuki, E.; Nishimatsu, H.; Takahashi, M.; Ogawa, Y.; Kimura, K.; Hirata, Y.; Fujita, T. A useful method of identifying of miRNAs which can down-regulate Zeb-2. BMC Res. Notes, 2013, 6, 470.
Grösch, S.; Maier, T.J.; Schiffmann, S.; Geisslinger, G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J. Natl. Cancer Inst., 2006, 98, 736-747.
Levade, T.; Andrieu-Abadie, N.; Micheau, O.; Legembre Pand Ségui, B. Sphingolipids modulate the epithelial-mesenchymal transition in cancer. Cell Death Discov., 2015, 1, 15001.
Cha, B.; Kim, Y.S.; Hwang, K.E.; Cho, K.H.; Oh, S.H.; Kim, B.R.; Jun, H.Y.; Yoon, K.H.; Jeong, E.T.; Kim, H.R. Celecoxib and sulindac inhibit TGF-β1-induced epithelial-mesenchymal transition and suppresslung cancer migration and invasion via downregulation of sirtuin 1. Oncotarget, 2016, 7, 57213-57227.
Kundu, N.; Smyth, M.J.; Samsel, L.; Fulton, A.M. Cyclooxygenase inhibitors block cell growth, increase ceramide and inhibit cell cycle. Breast Cancer Res. Treat., 2002, 76, 57-64.
Ahmad, A.; Aboukameel, A.; Kong, D.; Wang, Z.; Sethi, S.; Chen, W.; Sarkar, F.H.; Raz, A. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res., 2011, 71, 3400-3409.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [1002 - 1011]
Pages: 10
DOI: 10.2174/1871520619666190212123912
Price: $58

Article Metrics

PDF: 37