Study of Anti-inflammatory Activity of a New Non-opioid Analgesic on the Basis of a Selective Inhibitor of TRPA1 Ion Channels

Author(s): Evgeniya A. Beskhmelnitsyna* , Mikhail V. Pokrovskii , Aleksandr L. Kulikov , Anna A. Peresypkina , Evgeniy I. Varavin .

Journal Name: Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Volume 18 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: Nowadays, the group of NSAIDs is used the most widely in order to treat the inflammatory process. But its long-term administration increases the risk of complications of pharmacotherapy. Therefore, today it is urgent to search for new molecules that can selectively block biological targets that directly perceive inflammatory mediators. One of such targets is TRPA1. ZC02-0012, a compound from the group of substituted pyrazinopyrimidinones, which is a selective inhibitor of TRPA1 ion channel.

Objective: The aim of our study was to study the anti-inflammatory activity of an innovative molecule under the laboratory code ZC02-0012 from the group of selective inhibitors of TRPA1 ion channel.

Materials and Methods: Anti-inflammatory activity of ZC02-0012 was studied on the model of acute exudative inflammation of the paw in response to subplantar injection in the right hind paw of mice with 0.02 ml of 2% formaldehyde solution. The mass of the paw was measured after 4 hours (peak edema) after phlogistic injection. The test substance and the reference drug was administered intragastrically or intramuscularly 45 minutes before the injection of formaldehyde solution. The presence and intensity of antiinflammatory activity was judged by the inhibitory effect, represented in percent.

Results and Discussion: Selective inhibitor of the TRPA1 ion channel ZC02-0012 revealed the anti-inflammatory activity at doses of 3 and 9 mg/kg, its intensity is comparable to diclofenac sodium.

Conclusion: The selective inhibitor of the ion channel TRPA1, a substance under code ZC02-0012, has an anti-inflammatory activity comparable with diclofenac sodium.

Keywords: Inflammation, NSAIDs, substituted pyrazinopyrimidinones, selective inhibitor, TRPA1 ion channel, ZC02-0012.

[1]
Abramova, S.N.; Lazareva, G.A. Pharmacotherapy exacerbations of chronic inflammatory conditions of female genital sphere using to Gepon and Longidaza. Research Result: Pharmacology and Clinical Pharmacology, 2016, 2(4), 55-67.
[2]
Karakitsiou, M.; Varga, Z.; Kriska, M.; Kristova, V. Risk perception of NSAIDs in hospitalized patients in Greece. Bratisl. Lek Listy, 2017, 118(7), 427-430.
[3]
Lee, T.A.; Bartle, B.; Weiss, K.B. Impact of NSAIDs on mortality and the effect of preexisting coronary artery disease in US veterans. Am. J. Med., 2007, 120(1), 98.
[4]
Hawkey, C.J. Nonsteroidal anti-inflammatory drug gastropathy. Gastroenterology, 2000, 119(2), 521-535.
[5]
El-Setouhy, D.A.; Gamiel, A.A.; Badawi, A.A.; Osman, A.S.; Labib, D.A. Comparative study on the in vitro performance of blister molded and conventional lornoxicam immediate release liquitablets: Accelerated stability study and anti-inflammatory and ulcerogenic effects. Pharm. Dev. Technol., 2017, 22(2), 256-265.
[6]
Halici, Z.; Polat, B.; Cadirci, E.; Topcu, A.; Karakus, E.; Kose, D.; Albayrak, A.; Bayir, Y. Inhibiting renin angiotensin system in rate limiting step by aliskiren as a new approach for preventing indomethacin induced gastric ulcers. Chem. Biol. Interact., 2016, 258(258), 266-275.
[7]
Bjorkman, D.J. Current status of nonsteroidal anti-inflammatory drug (NSAID) use in the United States: Risk factors and frequency of complications. Am. J. Med., 1999, 107(6A), 3S-8S.
[8]
Solomon, D.H.; Husni, M.E.; Libby, P.A.; Yeomans, N.D.; Lincoff, A.M.; Lüscher, T.F.; Menon, V.; Brennan, D.M.; Wisniewski, L.M.; Nissen, S.E.; Borer, J.S. The risk of major NSAID toxicity with Celecoxib, Ibuprofen or Naproxen: A secondary analysis of the PRECISION randomized controlled clinical trial. Am. J. Med., 2017, 130(12), 1415-1422.
[9]
Bahmani, M.; Sarrafchi, A.; Shirzad, H.; Asgari, S.; Rafieian-Kopaei, M. Cardiovascular toxicity of cyclooxygenase inhibitors and promising natural substitutes. Curr. Pharm. Des., 2017, 23(6), 952-960.
[10]
Strom, B.L.; Carson, J.L.; Schinnar, R.; Snyder, E.S.; Shaw, M.; Lundin, F.E., Jr Nonsteroidal anti-inflammatory drugs and neutropenia. Arch. Intern. Med., 1993, 153(18), 2119-2124.
[11]
Oude Munnik, T.H.; Annink-Smoors, M.; Hom, H.W.; Sportel, E.T. [Agranulocytosis and septic shock after metamizole use]. Ned. Tijdschr. Geneeskd., 2016, 160, A9464.
[12]
Patton, W.; Duffull, S. Idiosyncratic drug-induced hematological abnormalities. Drug Saf., 1994, 11(6), 445-462.
[13]
Pedrazas López, D.; de Pablo Márquez, B.; García Font, D. Methamizole-induced agranulocytosis. Medicina Clínica Facultad de Medicina de Barcelona, 2016, 146(7)e41
[14]
Hirano, A.; Kimura, G.; Okada, C.; Soda, R.; Takahashi, K. Drug-induced asthma. Nihon Rinsho, 2007, 65(8)(Suppl. 8), 410-414.
[15]
Bort, R.; Ponsoda, X.; Jover, R.; Gómez-Lechón, M.J.; Castell, J.V. Diclofenac toxicity to hepatocytes: A role for drug metabolism in cell toxicity. J. Pharmacol. Exp. Ther., 1999, 288(1), 65-72.
[16]
Teoh, N.C.; Farrell, G.C. Hepatotoxicity associated with non-steroidal anti-inflammatory drugs. Clin. Liver Dis., 2003, 7(2), 401-413.
[17]
Pathan, E.; Gaitonde, S.; Rajadhyaksha, S.; Sule, A.; Mittal, G.; Joshi, V.R. A longitudinal study of serum creatinine levels in patients of rheumatoid arthritis on long term NSAID therapy. J. Assoc. Physicians India, 2003, 51, 1045-1049.
[18]
Van Staa, T.P.; Travis, S.; Leufkens, H.G.; Logan, R.F. 5-aminosalicylic acids and the risk of renal disease: A large British epidemiologic study. Gastroenterology, 2004, 126(7), 1733-1739.
[19]
Zhang, X.; Donnan, P.T.; Bell, S.; Guthrie, B. Non-steroidal anti-inflammatory drug induced acute kidney injury in the community dwelling general population and people with chronic kidney disease: Systematic review and meta-analysis. BMC Nephrol., 2017, 18(1), 256.
[20]
Kravchenko, D.V.; Beskhmelnitsyna, E.A.; Korokin, M.V.; Avtina, T.V.; Sernov, L.N.; Tishin, A.N.; Kostina, D.A. Molecular screening of prospective candidates for TRPA1 ion channel selective antagonists. Research Result: Pharmacology and Clinical Pharmacology, 2016, 1(2), 63-66.
[21]
Watanabe, H. Takayoshi Ohba1; Kazuhiro Satoh; Masaaki Sano; Shioya, T.; Ito, H. TRPV1 and TRPA1 in pulmonary vagal afferents and their relations to airway sensitivity. Antiinflamm. Antiallergy Agents Med. Chem., 2011, 10, 18-30.
[22]
Hodge, H.; Sterner, K. Clinical Toxicology of Commercial Products: Acute Poisoning, 4th ed; Williams and Wilkins, 1975, p. 427.
[23]
Beskhmelnitsyna, E.A.; Kravchenko, D.V.; Sernov, L.N.; Dolzhikova, I.N.; Avtina, T.V.; Kulikov, A.L.; Rozhnova, D.V.; Yakushev, V.I.; Martynov, M.A. Search and evaluation of pharmacodynamic and pharmacokinetic parameters of selective blocker of TRPA1 ion channels from the group of substituted pyrazinopyrimidinones. Research Result: Pharmacology and Clinical Pharmacology, 2018, 4(3), 49-62.
[24]
Yu, S.; Ouyang, A. TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(2), G255-G265.
[25]
Nakao, S.; Mabuchi, M.; Wang, S.; Kogure, Y.; Shimizu, T.; Noguchi, K.; Tanaka, A.; Dai, Y. Synthesis of resveratrol derivatives as new analgesic drugs through desensitization of the TRPA1 receptor. Bioorg. Med. Chem. Lett., 2017, 27(14), 3167-3172.
[26]
Pryde, D.C.; Marron, B.E.; West, C.W.; Reister, S.; Amato, G.; Yoger, K.; Antonio, B.; Padilla, K.; Cox, P.J.; Turner, J.; Warmus, J.S.; Swain, N.A.; Omoto, K.; Mahoney, J.H.; Gerlach, A.C. Discovery of a series of indazole TRPA1 antagonists. ACS Med. Chem. Lett., 2017, 8(6), 666-671.
[27]
McNamara, C.R.; Mandel-Brehm, J.; Bautista, D.M.; Siemens, J.; Deranian, K.L.; Zhao, M.; Hayward, N.J.; Chong, J.A.; Julius, D.; Moran, M.M.; Fanger, C.M. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. USA, 2007, 104(33), 13525-13530.
[28]
Wei, H.; Hämäläinen, M.M.; Saarnilehto, M.; Koivisto, A.; Pertovaara, A. Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology, 2009, 111(1), 147-154.
[29]
Green, D.; Ruparel, S.; Gao, X.; Ruparel, N.; Patil, M.; Akopian, A.; Hargreaves, K. Central activation of TRPV1 and TRPA1 by novel endogenous agonists contributes to mechanical allodynia and thermal hyperalgesia after burn injury. Mol. Pain, 2016, 12(12)1744806916661725
[30]
Eid, S.R.; Crown, E.D.; Moore, E.L.; Liang, H.A.; Choong, K.C.; Dima, S.; Henze, D.A.; Kane, S.A.; Urban, M.O. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain, 2008, 4, 48.
[31]
Taylor-Clark, T.E.; Undem, B.J.; Macglashan, D.W., Jr; Ghatta, S.; Carr, M.J.; McAlexander, M.A. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol. Pharmacol., 2008, 73(2), 274-281.
[32]
Yang, H.; Li, S. Transient receptor potential ankyrin 1 (TRPA1) channel and neurogenic inflammation in pathogenesis of asthma. Med. Sci. Monit., 2016, 22, 2917-2923.
[33]
Radresa, O.; Dahllöf, H.; Nyman, E.; Nolting, A.; Albert, J.S.; Raboisson, P. Roles of TRPA1 in pain pathophysiology and implications for the development of a new class of analgesic drugs. Open Pain J., 2013, 6, 137-153.
[34]
Skerratt, S. Recent progress in the discovery and development of TRPA1 modulators. Prog. Med. Chem., 2017, 56, 81-115.
[35]
Moilanen, L.J.; Hämäläinen, M.; Lehtimäki, L.; Nieminen, R.M.; Moilanen, E. Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice-potential role for transient receptor potential ankyrin 1 in gout. PLoS One, 2015, 10(2)e0117770
[36]
de David Antoniazzi, C.T.; De Prá, S.D.; Ferro, P.R.; Silva, M.A.; Adamante, G.; de Almeida, A.S.; Camponogara, C.; da Silva, C.R.; de Bem Silveira, G.; Silveira, P.C.L.; Oliveira, S.M.; Rigo, F.K.; De Logu, F.; Nassini, R.; Trevisan, G. Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur. J. Pharm. Sci., 2018, 125, 28-38.
[37]
Mukhopadhyay, I.; Kulkarni, A.; Aranake, S.; Karnik, P.; Shetty, M.; Thorat, S.; Ghosh, I.; Wale, D.; Bhosale, V.; Khairatkar-Joshi, N. Transient receptor potential ankyrin 1 receptor activation in vitro and in vivo by pro-tussive agents: GRC 17536 as a promising anti-tussive therapeutic. PLoS One, 2014, 9(5)e97005
[38]
Skerratt, S.E.; West, C.W. Ion channel therapeutics for pain. Channels (Austin), 2015, 9(6), 344-351.
[39]
Koivisto, A.; Jalava, N.; Bratty, R.; Pertovaara, A. TRPA1 antagonists for pain relief. Pharmaceuticals (Basel), 2018, 11(4), 117.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 2
Year: 2019
Page: [110 - 125]
Pages: 16
DOI: 10.2174/1871523018666190208123700
Price: $58

Article Metrics

PDF: 47
HTML: 2
EPUB: 1
PRC: 1