Acrylamide Induced Toxicity and the Propensity of Phytochemicals in Amelioration: A Review

Author(s): Shinomol George Kunnel* , Sunitha Subramanya , Pankaj Satapathy , Ishtapran Sahoo , Farhan Zameer* .

Journal Name: Central Nervous System Agents in Medicinal Chemistry

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Acrylamide is widely found in baked and fried foods, produced in large amount in industries and is a prime component in toxicity. This review highlights various toxicities that are induced due to acrylamide, its proposed mode of action including oxidative stress cascades and ameliorative mechanisms using phytochemicals. Acrylamide formation, the mechanism of toxicity and the studies on the role of oxidative stress and mitochondrial dysfunctions are elaborated in this paper. The various types of toxicities caused by Acrylamide and the modulation studies using phytochemicals that are carried out on various type of toxicity like neurotoxicity, hepatotoxicity, cardiotoxicity, immune system, and skeletal system, as well as embryos have been explored. Lacunae of studies include the need to explore methods for reducing the formation of acrylamide in food while cooking and also better modulators for alleviating the toxicity and associated dysfunctions along with identifying its molecular mechanisms.

Keywords: Acrylamide, antioxidants, modulators, neurotoxicity, phytochemicals, reactive oxygen species.

[1]
[2]
Brown, L.; Rhead, M.M.; Bancroft, K.C.C.; Allen, N. Case studies of acrylamide pollution resulting from the industrial use of acrylamides. Water Pollut. Control, 1980, 79(4), 507-510. a
[3]
Howard, P.H. Acrylamide. Handbook of Environmental Fate and Exposure Data for Organic Chemicals, 1st ed; CRC Press: Florida, 1989, pp. 13-19.
[4]
Brown, L.; Rhead, M.M.; Bancroft, K.C.C.; Allen, N. Model studies of the degradation of acrylamide monomer. Water Res., 1980, 14(7), 775-778. b
[5]
Pedreschi, F.; Kaack, K.; Granby, K. Reduction of acrylamide formation in potato slices during frying. LWT. Food Sci. Technol.,, 2004, 37(6), 679-685.
[6]
Manson, J.; Brabec, M.J.; Buelke-Sam, J.; Carlson, G.P.; Chapin, R.E.; Favor, J.B.; Fischer, L.J.; Hattis, D.; Lees, P.S.; Perreault-Darney, S.; Rutledge, J.; Smith, T.J.; Tice, R.R.; Working, P. NTP-CERHR expert panel report on the reproductive and developmental toxicity of acrylamide. Birth Defects Res. B Dev. Reprod. Toxicol., 2005, 74(1), 17-113.
[7]
TRI. TRI Explorer Chemical Report. U.S. Environmental Protection Agency. Available from: http//www.epa.gov/triexplorer and select Acrylamide.. (Accessed on: August 20, 2009).
[8]
WHO; Health implications of acrylamide in food , Report of a Joint FAO/WHO Consultation. WHO Headquarters, Geneva, Switzerland, 25-27 June,. 2002.
[9]
Mottram, D.S. Acrylamide is formed in the Maillard reaction. Nature, 2002, 419, 448-449.
[10]
LoPachin, R.M. The changing view of acrylamide neurotoxicity. Neurotoxicology, 2004, 25, 617-630.
[11]
Yu, S.; Son, F.; Yu, J.; Zhao, X.; Yu, L.; Li, G.; Xie, K. Acrylamide alters cytoskeletal protein level in rat sciatic nerves. Neurochem. Res., 2006, 31(10), 1197-1204.
[12]
Slayne, M.A.; Lineback, D.R. Acrylamide: Considerations for risk management. J. AOAC Int., 2005, 88(1), 227-233.
[13]
Gertz, C.; Klostermann, S. Analysis of acrylamide and mechanisms of its formation in deep-fried products. Eur. J. Lipid Sci. Technol., 2002, 104, 762-771.
[14]
Yousef, M.I.; El-Demerdash, F.M. Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology, 2006, 219(1-3), 133-141.
[15]
Prasad, S.N. Muralidhara. Evidence of acrylamide-induced oxidative stress and neurotoxicity in Drosophila melanogaster - its amelioration with spice active enrichment: Relevance to neuropathy. Neurotoxicology, 2012, 33(5), 1254-1264.
[16]
Catalgol, B.; Ozhan, G.; Alpertunga, B. Acrylamide-induced oxidative stress in human erythrocytes. Hum. Exp. Toxicol., 2009, 28(10), 611-617.
[17]
Sridevi, B.; Reddy, K.V.; Reddy, S.L.N. Effect of trivalent and hexavalent chromium on antioxidant enzyme activities and lipid peroxidation in a freshwater field crab, Barytelphusaguerini. Bull. Environ. Contam. Toxicol., 1998, 61, 384-390.
[18]
US EPA Acrylamide CASRN 79-06-1. Available from: . https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=286
[19]
Ling, B.; Authier, N.; Balayssac, D.; Eschalier, A.; Coudore, F. Assessment of nociception in acrylamide-induced neuropathy in rats. Pain, 2005, 119, 104-112.
[20]
LoPachin, R.M.; Gavin, T. Acrylamide induced nerve terminal damage: relevance to neurotoxic and neurodegenerative mechanisms. J. Agric. Food Chem., 2008, 56, 5994-6003.
[21]
Prasad, S.N. Muralidhara. Neuroprotective efficacy of eugenol and isoeugenol in acrylamide induced neuropathy in rats: Behavioral and biochemical evidence. Neurochem. Res., 2013, 38, 330-345.
[22]
Park, H.R.; Kim, M.S.; Kim, S.J.; Park, M.; Kong, K.H.; Kim, H.S.; Kwack, S.J.; Kang, T.S.; Kim, S.H.; Kim, H.S.; Lee, J. Acrylamide induces cell death in neural progenitor cells and impairs hippocampal neurogenesis. Toxicol. Lett., 2010, 193, 86-93.
[23]
Tareke, E.; Lyn-Cook, B.D.; Duhart, H.; Newport, G.; Ali, S. Acrylamide decreased dopamine levels and increased 3-nitrotyrosine (3-NT) levels in PC 12 cells. Neurosci. Lett., 2009, 458, 89-92.
[24]
Lyn-Cook, Jr L.E.; Tareke, E.; Word, B.; Starlard-Davenport, A.; Lyn-Cook, B.D.; Hammons, G.J. Food contaminant acrylamide increase expression of Cox-2 and nitric oxide synthase in breast epithelial cells. Toxicol. Ind. Health, 2011, 27, 11-18.
[25]
Zödl, B.; Schmid, D.; Wassler, G.; Gundacker, C.; Leibetseder, V.; Thalhammer, T.; Ekmekcioglu, C. Intestinal transport and metabolism of acrylamide. Toxicology, 2007, 232, 99-108.
[26]
Lash, L.H. Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem. Biol. Interact., 2006, 163, 54-67.
[27]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39, 44-84.
[28]
Circu, M.L.; Rodriguez, C.; Maloney, R.; Moyer, M.P.; Aw, T.Y. Contribution of mitochondrial GSH transport to matrix GSH status and colonic epithelial cell apoptosis. Free Radic. Biol. Med., 2008, 44, 768-778.
[29]
Wang, T.G.; Gotoh, Y.; Jennings, M.H.; Rhoads, C.A.; Aw, T.Y. Lipid hydroperoxide-induced apoptosis in human colonic CaCo-2 cells is associated with an early loss of cellular redox balance. FASEB J., 2000, 14, 1567-1576.
[30]
Lehning, E.J.; Persaud, A.; Dyer, K.R.; Jortner, B.S.; LoPachin, R.M. Biochemical and morphologic characterization of acrylamide peripheral neuropathy. Toxicol. Appl. Pharmacol., 1998, 151, 211-221.
[31]
Chretien, M.; Patey, G.; Souyri, F.; Droz, B. Acrylamide-induced neuropathy and impairment of axonal transport of proteins. II. Abnormal accumulations of smooth endoplasmic reticulum as sites of focal retention of fast transported proteins. Electron Microscope radioautographic study. Brain Res., 1981, 205, 15-28.
[32]
DeGrandchamp, R.L.; Lowndes, H.E. Early degeneration and sprouting at the rat neuromuscular junction following acrylamide administration. Neuropathol. Appl. Neurobiol., 1990, 16, 239-254.
[33]
DeGrandchamp, R.L.; Reuhl, K.R.; Lowndes, H.E. Synaptic terminal degeneration and remodeling at the rat neuromuscular junction resulting from a single exposure to acrylamide. Toxicol. Appl. Pharmacol., 1990, 105, 422-433.
[34]
Jennekens, F.G.I.; Veldman, H.; Schotman, P.; Gispen, W.H. Sequence of motor nerve terminal involvement in acrylamide neuropathy. Acta Neuropathol., 1979, 46, 57-63.
[35]
Prineas, J. The pathogenesis of dying-back polyneuropathies. Part II. An ultrastructural study of experimental acrylamide intoxication in the cat. J. Neuropathol. Exp. Neurol., 1969, 28, 598-621.
[36]
Tsujihata, M.; Engel, A.G.; Lambert, E.H. Motor end-plate fine structure in acrylamide dying-back neuropathy: A sequential morphometric study. Neurology, 1974, 24, 849-856.
[37]
Goldstein, B.D.; Lowndes, H.E. Spinal cord defect in the peripheral neuropathy resulting from acrylamide. Neurotoxicology, 1979, 1, 75-87.
[38]
LoPachin, R.M.; Ross, J.F.; Reid, M.L.; Dasgupta, S.; Mansukhani, S.; Lehning, E.J. Neurological evaluation of toxic axonopathies in rats: acrylamide and 2,5-hexanedione. Neurotoxicology, 2002, 23, 95-110. b
[39]
Tsujihata, M.; Engel, A.G.; Lambert, E.H. Motor end-plate fine structure in acrylamide dying-back neuropathy: A sequential morphometric study. Neurology, 1974, 24, 849-856.
[40]
Chen, J-H.; Wu, K-Y.; Chiu, I-M.; Tsou, T-C.; Chou, C-C. Acrylamide-induced astrogliotic and apoptotic responses in human astrocytoma cells. Toxicol. In Vitro, 2009, 23, 855-861.
[41]
Jangir, B.L.; Mahaprabhu, R.; Rahangadale, S.; Bhandarkar, A.G.; Kurkure, V.N. Neurobehavioral alterations and histopathological changes in brain and spinal cord of rats intoxicated with Acrylamide. Toxicol. Ind. Health, 2013, 32(3), 526-540.
[42]
Jahn, R.; Sudhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem., 1999, 68, 863-911.
[43]
Lin, R.C.; Scheller, R.H. Mechanisms of synaptic vesicle exocytosis. Annu. Rev. Cell Dev. Biol., 2000, 16, 19-49.
[44]
Nichols, B.J.; Pelham, H.R.B. SNAREs and membrane fusion in the Golgi apparatus. Biochim. Biophys. Acta, 1998, 1404, 9-31.
[45]
Rothman, J.E. Mechanisms of intracellular protein transport. Nature, 1994, 372, 55-63.
[46]
Littleton, J.T.; Chapman, E.R.; Kreber, R.; Garment, M.B.; Carlson, S.D.; Ganetzky, B. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron, 1998, 21, 401-413.
[47]
Malhotra, V.; Orci, L.; Glick, B.S.; Block, M.R.; Rothman, J.E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell, 1988, 54, 221-227.
[48]
Tolar, L.A.; Pallanck, L. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J. Neurosci., 1998, 18(24), 10250-10256.
[49]
Lehning, E.J.; Balaban, C.D.; Ross, J.F.; Reid, M.A.; LoPachin, R.M. Acrylamide neuropathy: I. Spatiotemporal characteristics of nerve cell damage in rat cerebellum. Neurotoxicology, 2002, 23, 397-414.
[50]
LoPachin, R.M.; Balaban, C.D.; Ross, J.F. Acrylamide axonopathy revisited. Toxicol. Appl. Pharmacol., 2003, 188, 135-153.
[51]
Crofton, K.M.; Padilla, S.; Tilson, H.A.; Anthony, D.C.; Raymer, J.H.; MacPhail, R.C. The impact of dose rate on the neurotoxicity of acrylamide: The interaction of administered dose, target tissue concentrations, tissue damage, and functional effects. Toxicol. Appl. Pharmacol., 1996, 139, 163-176.
[52]
Cavanagh, J.B. The significance of the “dying back” process in experimental and human neurological disease. Int. Rev. Exp. Pathol., 1964, 3, 219-267.
[53]
Spencer, P.S.; Schaumburg, H.H. A review of acrylamide neurotoxicity. Part II. Experimental animal neurotoxicity and pathologic mechanisms. Can. J. Neurol. Sci., 1974, 1, 152-169.
[54]
Cavanagh, J.B. The pathokinetics of acrylamide intoxication: A reassessment of the problem. Neuropathol. Appl. Neurobiol., 1982, 8, 315-336.
[55]
Cavanagh, J.B.; Gysbersm, M.F. Ultrastructural features of the Purkinje cell damage caused by acrylamide in the rat: A new phenomenon in cellular neurophysiology. J. Neurocytol., 1983, 12, 413-437.
[56]
Cavanagh, J.B.; Nolan, C.C. Selective loss of Purkinje cells from the rat cerebellum caused by acrylamide and the responses of b-glucuronidase and b-galactosidase. Acta Neuropathol., 1982, 58, 210-214.
[57]
Kelly, R.B.; Grote, E. Protein targeting in the neuron. Annu. Rev. Neurosci., 1993, 16, 95-127.
[58]
Rothman, J.E.; Wieland, F.T. Protein sorting by transport vesicles. Science, 1996, 272, 227-234.
[59]
Ghez, C.; Thach, W.T. The Cerebellum. In:Principles of neural science; Kandel, E.R.; Schwartz, J.H.; Jessell, T.M., Eds.; McGraw-Hill: New York, 2000, Vol. 4, pp. 832-852.
[60]
Dybing, E.; Farmer, P.B.; Andersen, M.; Fennell, T.R.; Lalljie, S.P.; Müller, D.J.; Olin, S.; Petersen, B.J.; Schlatter, J.; Scholz, G.; Scimeca, J.A.; Slimani, N.; Törnqvist, M.; Tuijtelaars, S.; Verger, P. Human exposure and internal dose assessments of acrylamide in food. Food Chem. Toxicol., 2005, 43, 365-410.
[61]
Sumner, S.C.J.; Williams, C.C.; Snyder, R.W.; Krol, W.L.; Asgharian, B.; Fennell, T.R. Acrylamide: A comparison of metabolism and haemoglobin adducts in rodents following dermal, intraperitoneal, oral, or inhalation exposure. Toxicol. Sci., 2003, 75, 260-270.
[62]
Bergmark, R.; Calleman, C.J.; Costa, L.G. Formation of haemoglobin adducts of acrylamide and its epoxide metabolite glycidamide in the rat. Toxicol. Appl. Pharmacol., 1991, 111, 352-363.
[63]
Ghanayem, B.I.; Witt, K.L.; Kissling, G.E.; Tice, R.R.; Recio, L. Absence of acrylamide-induced genotoxicity in CYP2E1-null mice: evidence consistent with a glycidamide-mediated effect. Mutat. Res., 2005, 578, 284-297.
[64]
Sumner, S.C.; Fernell, T.R.; Moore, T.A.; Chanas, B.; Gonzalez, F.; Ghanayem, B.I. Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem. Res. Toxicol., 1999, 12, 1110-1116.
[65]
Calleman, C.J. The metabolism and pharmacokinetics of Acrylamide: Implications for mechanisms of toxicity and human risk. Drug Metab. Rev., 1996, 28, 527-590.
[66]
Park, J.; Kamendulis, L.M.; Friedman, M.A.; Klaunig, J.E. Acrylamide-induced cellular transformation. Toxocol. Sci., 2002, 65, 177-183.
[67]
Schmatz, R.; Mazzanti, C.; Spanevello, R.; Stefanello, N.; Gutierres, J.; Corrêa, M.; da Rosa, M.M.; Rubin, M.A.; Chitolina Schetinger, M.R.; Morsch, V.M. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin induced diabetic rats. Eur. J. Pharmacol., 2009, 610, 42-48.
[68]
Bernhardi, R.V.; Alarcón, R.; Mezzano, D.; Fuentes, P.; Inestrosa, N.C. Blood cells cholinesterase activity in early Alzheimer’s disease and vascular dementia. Dement. Geriatr. Cogn. Disord., 2005, 19, 204-212.
[69]
Zhao, M. Lewis, Wang, F.S.; Hu, X.; Chen, F.; Chan, H.M. Acrylamide-induced neurotoxicity in primary astrocytes and microglia: Roles of the Nrf2-ARE and NF-κB pathways. Food Chem. Toxicol., 2017, 106, 25-35.
[70]
Zhao, M.; Wang, F.S.; Hu, X.S.; Chen, F.; Chan, H.M. Effect of acrylamide-induced neurotoxicity in a primary astrocytes/microglial co-culture model. Toxicol. In Vitro, 2017, 39, 119-125.
[71]
Halliwell, B. Oxidative stress and neurodegeneration: Where are we now. J. Neurochem., 2006, 97, 1634-1658.
[72]
Maiese, K.; Chong, Z.Z.; Hou, J.; Shang, Y.C. Oxidative stress: Biomarkers and novel therapeutics. Exp. Gerontol., 2010, 45, 217-234.
[73]
Zhu, Y.J.; Zeng, T.; Zhu, Y-B. Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem. Res., 2008, 33, 2310-2317.
[74]
Chen, J.C. Schwartz. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults. Neurotoxicology, 2009, 30(2), 231-239.
[75]
Ghareeb, D.A.; Khalil, A.A.; Elbassoumy, A.M.; Hussien, H.M.; Sraiaa, M.M.A. Ameliorated effects of garlic (Allium sativum) on biomarkers of subchronic acrylamide hepatotoxicity and brain toxicity in rats. Toxicol. Environ. Chem., 2010, 92, 1357-1372.
[76]
Mehri, S.; Abnous, K.; Mousavi, S.H.; Shariaty, V.M.; Hosseinzaddeh, H. Neuroprotective effect of crocin on acrylamide induced cytotoxicity in PC 12 cells. Cell. Mol. Neurobiol., 2011, 30, 185-191.
[77]
Zhou, Y.; Wang, O.; Evers, B.M.; Chung, D.H. Signal transduction pathways involved in oxidative stress-induced intestinal epithelial cell apoptosis. Pediatr. Res., 2005, 58, 1192-1197.
[78]
Ding, Q.; Wang, Q.; Evers, B.M. Alterations of MAPK activities associated with intestinal cell differentiation. Biochem. Biophys. Res. Commun., 2001, 284, 282-288.
[79]
Zingarelli, B.; Yang, Z.; Hake, P.W.; Denenberg, A.; Wong, H.R. Absence of endogenous interleukin-10 enhances early stress response during postischemic injury in mice intestine. Gut, 2001, 5, 610-622.
[80]
Romier, B.; Schneider, Y.J.; Larondelle, Y.; During, A. Dietary polyphenols can modulate the intestinal inflammatory response. Nutr. Rev., 2009, 67, 363-378.
[81]
IARC. Acrylamide. In:Some Chemicals Used in Plastics and Elastomers. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, ; International Agency for Research on Cancer; Lyon, France:, 1986, vol.39, pp. 41-66.
[82]
Dearfield, K.L.; Abernathy, C.O.; Ottley, M.S.; Brantner, J.H.; Hayes, P.F. Acrylamide: Its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutat. Res., 1988, 195, 45-77.
[83]
Dearfield, K.L.; Douglas, G.R.; Ehling, U.H.; Moore, M.M.; Sega, G.A.; Brusick, D.J. Acrylamide: A review of its genotoxicity and an assessment of heritable genetic risk. Mutat. Res., 1995, 330, 71-99.
[84]
Friedman, M. Chemistry, biochemistry, and safety of acrylamide. A review. J. Agric. Food Chem., 2003, 51, 4504-4526.
[85]
Hariri, E.; Martin, I.A.; Sally, D.; Samira, K.; Mohamad, M.; Robin, I.T. Carcinogenic and neurotoxic risk of Acrylamide and heavy metals from potato and corn chips consumed by the Lebanese population. J. Food Compos. Anal., 2015, 42, 91-97.
[86]
Marsh, G.M.; Lucas, L.J.; Youk, A.O.; Schall, L.C. Mortality patterns among workers exposed to acrylamide: 1994 follow up. Occup. Environ. Med., 1999, 56(3), 181-190.
[87]
Schulz, M.R.; Hertz-Picciotto, I.; Van Wijngaarden, E.; Hernandez, J.C.; Ball, L.M. Correspondence: Dose-response relation between acrylamide and pancreatic cancer. Occup. Environ. Med., 2001, 58(9), 609.
[88]
Cook, L.E.L., Jr Tareke. E.; Word, B.; Davenport, A.S.; Cook, B.D.L.; Hammons, G.J. Food contaminant acrylamide increases expression of Cox-2 and nitric oxide synthase in breast epithelial cells. Toxicol. Ind. Health, 2011, 27, 11-18.
[89]
Lim, T.G.; Lee, B.K.; Kwon, J.Y.; Jung, S.K.; Lee, K.W. Acrylamide up-regulates cyclooxygenase-2 expression through the MEK/ERK signalling pathway in mouse epidermal cells. Food Chem. Toxicol., 2011, 49, 1259-1264.
[90]
Hogervorst, J.G.F.; van den Brandt, P.A.; Godschalk, R.W.L.; van Schooten, F.J.; Schouten, L.J. Interactions between dietary acrylamide intake and genes for ovarian cancer risk. Eur. J. Epidemiol., 2017, 32(5), 431-441.
[91]
Hogervorst, J.G.; van den Brandt, P.A.; Godschalk, R.W.; van Schooten, F.J.; Schouten, L.J. The influence of single nucleotide polymorphisms on the association between dietary acrylamide intake and endometrial cancer risk. Sci. Rep., 2016, 7(6), 34902.
[92]
Lopachin, R.M.; Barber, D.S.; Geohagen, B.C.; Gavin, T.; He, D.; Das, S. Structure-toxicity analysis of type-2 alkenes: In vitro neurotoxicity. Toxicol. Sci., 2007, 95(1), 136-146.
[93]
Takahashi, M.; Shibutani, M.; Inoue, K.; Fujimoto, H.; Hirose, M.; Nishikawa, A. Pathological assessment of the nervous and male reproductive systems of rat offspring exposed maternally to Acrylamide during the gestation and lactation periods-a preliminary study. J. Toxicol. Sci., 2008, 33, 11-24.
[94]
Xiao, Y.; Tates, A.D. Increased frequencies of micronuclei in early spermatids of rats following exposure of young primary spermatocytes to acrylamide. Mutat. Res., 1994, 309, 245-253.
[95]
Lahdetie, J.; Suutari, A.; Sjoblom, T. The spermatid micronucleus test with the dissection technique detects the germ cell mutagenicity of acrylamide in rat meiotic cells. Mutat. Res., 1994, 309, 255-262.
[96]
Shelby, M.D.; Cain, K.T.; Cornett, C.V.; Generoso, W.M. Acrylamide: induction of heritable translocation in male mice. Environ. Mutagen., 1987, 9, 363-368.
[97]
Adler, I.D.; Reitmeir, P.; Schmoller, R.; Schriever-Schwemmer, G. Dose response for heritable translocations induced by acrylamide in spermatids of mice. Mutat. Res., 1994, 309, 285-291.
[98]
Koyama, N.; Yasui, M.; Kimura, A.; Takami, S.; Suzuki, T.; Masumura, K.; Nohmi, T.; Masuda, S.; Kinae, N.; Matsuda, T.; Imai, T.; Honma, M. Acrylamide genotoxicity in young versus adult gpt delta male rats. Mutagenesis, 2011, 26(4), 545-549.
[99]
Yilmaz, B.O.; Yildizbayrak, N.; Aydin, Y.; Erkan, M. Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum. Exp. Toxicol., 2017, 36(12), 1225-1235.
[100]
Sorgel, F.; Weissenbacher, R.; Kinzig-Schippers, M.; Hofmann, A.; Illauer, M.; Skott, A.; Landersdorfer, C. Acrylamide: Increased concentrations in home made food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy, 2002, 48, 267-274.
[101]
Marlowe, C.; Clark, M.J.; Mast, R.W. The distribution of (14C) acrylamide in male and pregnant Swiss Webster mice by whole body autoradiography. Toxicol. Appl. Pharmacol., 1986, 86, 457-465.
[102]
Sumner, S.C.J.; Bahman, A.; Williams, C.C.; Snyder, R.W.; Krol, W.L.; Asgharian, B.; Fennell, T.R. Acrylamide, metabolism, distribution, and hemoglobin adducts in male F344 rats and B6C3F1 mice following inhalation exposure and distribution and hemoglobin adducts following dermal application to F344 rats. Toxicol. Sci., 2003, 75, 260-270.
[103]
Friedman, M.; Tyl, R.W.; Marr, M.C.; Myers, C.B.; Gerling, F.S.; Ross, W.P. Effects of lactational administration of acrylamide on rat dams and offspring. Reprod. Toxicol., 1999, 13, 511-520.
[104]
Allam, A.; El-Gareeb, A.; Ajarem, J.; Abdul-Hamid, M.; El-Bakry, A. Effect of acrylamide on the development of medulla oblongata in albino rat: Biochemical and morphological studies. Afr. J. Pharm. Pharmacol., 2013, 7(20), 1320-1331.
[105]
Ghorbel, I.; Amara, I.B.; Ktari, N.; Elwej, A.; Boudawara, O.; Boudawara, T.; Zeghal, N. Aluminium and acrylamide disrupt cerebellum redox states, cholinergic function and membrane-bound ATPase in adult rats and their offspring. Biol. Trace Elem. Res., 2016, 174(2), 335-346.
[106]
Erdemli, M.E.; Altinoz, E.; Aksungur, Z.; Turkoz, Y.; Dogan, Z. Gozukara, Bag, H. Biochemical investigation of the toxic effects of acrylamide administration during pregnancy on the liver of mother and foetus and the protective role of vitamin E. J. Matern. Fetal Neonatal Med., 2017, 30(7), 844-848.
[107]
Huang, M.; Jiao, J.; Wang, J.; Xia, Z.; Zhang, Y. Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. J. Hazard. Mater., 2018, 5(347), 451-460.
[108]
Milner, J.A. Mechanisms by which garlic and allylsulfur compounds suppress carcinogen bioactivation. Garlic and carcinogenesis. Adv. Exp. Med. Biol., 2001, 492, 69-81.
[109]
Yang, C.S.; Chhabra, S.K.; Hong, J.Y.; Smith, T.J. Mechanisms of inhibition of chemical toxicity and carcinogenesis by diallyl sulfide (DAS) and related compounds from garlic. J. Nutr., 2001, 131, 1041S-1045S.
[110]
Alturfan, A.A.; Tozan-Beceren, A.; Omurtag, G.Z.; Sehirli, A.O.; Sener, G.; Demiralp, E. Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol. Biol. Rep., 2012, 39, 4589-4596.
[111]
Krishna, G. Muralidhara. Inulin supplementation during gestation mitigates acrylaminde- induced maternal and fetal brain oxidative dysfunction and neurotoxicity in rats. Neurotoxicol. Teratol., 2015, 49, 49-58.
[112]
Hosamani, R. Muralidhara. Prophylactic treatment with Bacopamonnieri leaf powder mitigates paraquat-induced oxidative perturbations and lethality in Drosophila melanogaster. Indian J. Biochem. Biophys., 2010, 47, 75-82.
[113]
Motamedshariaty, V.S.; Farzad, S.A.; Nassiri-Asl, M.; Hosseinzadeh, H. Effect of rutin on acrylamide-induced neurotoxicity. DARU, 2014, 22(1), 27.
[114]
Zhu, J.W.; Chen, T.; Guan, J.Z.; Liu, W.B.; Liu, J. Potential protective effects of oral administration of allicin on acrylamide-induced toxicity in male mice. Neurochem. Int., 2012, 61, 640-648.
[115]
Mehri, S.; Meshki, M.A.; Hosseinzadeh, H. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem. Toxicol., 2014, 21, 1-5.
[116]
Mehri, S.; Karami, H.V.; Hassani, F.V.; Hosseinzadeh, H. Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iran. Biomed. J., 2014, 18(2), 101-106.
[117]
Mehri, S.; Hosseinzadeh, H.; Abnous, K.; Mousavi, K.A. Crocin decreased acrylamide - induced neurotoxicity in wistar rat through oxidative stress and apoptosis pathway. Res. Pharm. Sci., 2012, 7(5), S1009.
[118]
Shinomol, G.K.; Raghunath, N.; Bharath, M.M. Muralidhara. Prophylaxis with Bacopamonnieri attenuates acrylamide induced neurotoxicity and oxidative damage via elevated antioxidant function. Cent. Nerv. Syst. Agents Med. Chem., 2013, 13(1), 3-12.
[119]
Mannaa, F.; Abdel-Wahhab, M.A.; Ahmed, H.H.; Park, M.H. Protective role of Panax ginseng extract standardized with ginsenoside Rg3 against acrylamide-induced neurotoxicity in rats. J. Appl. Toxicol., 2006, 26(3), 198-206.
[120]
Abd El-Halim, S.S.; Mohamed, M.M. Garlic powder attenuates acrylamide-induced oxidative damage in multiple organs in rat. J. Appl. Sci. Res., 2012, 8(1), 168-173.
[121]
Lakshmi, D.; Gopinath, K.; Jayanthy, G.; Anjum, S.; Prakash, D.; Sudhandiran, G. Ameliorating effect of fish oil on acrylamide induced oxidative stress and neuronal apoptosis in cerebral cortex. Neurochem. Res., 2012, 37(9), 1859-1867.
[122]
Mabile, L.; Piolot, A.; Boulet, L.; Fortin, L.J.; Doyle, N.; Rodriguez, C.; Davignon, J.; Blache, D.; Lussier-Cacan, S. Moderate intake of n - 3 fatty acids is associated with stable erythrocyte resistance to oxidative stress in hypertriglyceridemic subjects. Am. J. Clin. Nutr., 2001, 74, 449-456.
[123]
Muchowski, P.J.; Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci., 2005, 6, 11-22.
[124]
An, J.J.; Lee, Y.P.; Kim, S.Y.; Lee, S.H.; Lee, M.J.; Jeong, M.S.; Kim, D.W.; Jang, S.H.; Yoo, K.Y.; Won, M.H.; Kang, T.C.; Kwon, O.S.; Cho, S.W.; Lee, K.S.; Park, J.; Eum, W.S.; Choi, S.Y. Transduced human PEP- 1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J., 2008, 275, 1296-1308.
[125]
Shukla, P.K.; Khanna, V.K.; Ali, M.M.; Maurya, R.R.; Handa, S.S.; Srimal, R.C. Protective effect of acoruscalamus against acrylamide induced neurotoxicity. Phytother. Res., 2002, 16(3), 256-260.
[126]
Abdelall, H.F.; El-Ghamrawy, T.A.; Helmy, D. Morphological evaluation of the protective role of dark soy sauce against acrylamide induced neurotoxicity in albino rats. Folia Morphol. (Warsz), 2015, 74(1), 16-24.
[127]
Xichun, Z.; Min’ai, Z. Protective role of dark soy sauce against acrylamide-induced neurotoxicity in rats by antioxidative activity. Toxicol. Mech. Methods, 2009, 19(5), 369-374.
[128]
Chen, W.; Feng, L.; Huang, Z.; Su, H. Hispidin produced from Phellinuslinteus protects against peroxynitrite-mediated DNA damage and hydroxyl radical generation. Chem. Biol. Interact., 2012, 199, 137-142.
[129]
Chen, J.H.; Yang, C.H.; Wang, Y.S.; Lee, J.G.; Cheng, C.H.; Chou, C.C. Acrylamide induced mitochondria collapse and apoptosis in human astrocytoma cells. Food Chem. Toxicol., 2013, 51, 446-452.
[130]
Szewczyk, Ł.; Ulanska, J.; Dubiel, M.; Osyczka, A.M.; Tylko, G. The effect of acrylamide and nitric oxide donors on human mesenchymal progenitor cells. Toxicol. In Vitro, 2012, 26, 897-906.
[131]
Yang, S.; Cao, C.; Chen, S.; Hu, L.; Bao, W.; Shi, H.; Zhao, X.; Sun, C. Serum metabolomics analysis of quercetin against acrylamide-induced toxicity in rats. J. Agric. Food. Chem.,, 2016, 7,64(48), 9237-9245.
[132]
Uthra, C.; Shrivastava, S.; Jaswal, A.; Sinha, N.; Reshi, M.S.; Shukla, S. Therapeutic potential of quercetin against acrylamide induced toxicity in rats. Biomed. Pharmacother., 2017, 86, 705-714.
[133]
Zargar, S.; Siddiqi, N.J.; Ansar, S.; Alsulaimani, M.S.; El Ansary, A.K. Therapeutic role of quercetin on oxidative damage induced by acrylamide in rat brain. Pharm. Biol., 2016, 54(9), 1763-1767.
[134]
Zhang, L.; Xu, Y.; Li, Y.; Bao, T.; Gowd, V.; Chen, W. Protective property of mulberry digest against oxidative stress-A potential approach to ameliorate dietary acrylamide-induced cytotoxicity. Food Chem., 2017, 1(23), 306-315.
[135]
Chen, W.; Su, H.; Xu, Y.; Jin, C. In vitro gastrointestinal digestion promotes the protective effect of blackberry extract against acrylamide-induced oxidative stress. Sci. Rep., 2017, 13(7), 40514.
[136]
Chen, W.; Su, H.; Xu, Y.; Bao, T.; Zheng, X. Protective effect of wild raspberry (Rubus hirsutus Thunb.) extract against acrylamide-induced oxidative damage is potentiated after simulated gastrointestinal digestion. Food Chem., 2016, 1(196), 943-952.
[137]
Şekeroğlu, Z.A.; Aydın, B.; Şekeroğlu, V. Argan oil reduces oxidative stress, genetic damage and emperipolesis in rats treated with acrylamide. Biomed. Pharmacother., 2017, 94, 873-879.
[138]
Ghorbel, I.; Chaâbane, M.; Boudawara, O.; Kamoun, N.G.; Boudawara, T.; Zeghal, N. Dietary unsaponifiable fraction of extra virgin olive oil supplementation attenuates lung injury and DNA damage of rats co-exposed to aluminum and acrylamide. Environ. Sci. Pollut. Res. Int., 2016, 23(19), 19397-19408.
[139]
Zamani, E.; Shokrzadeh, M.; Ziar, A.; Abedian-Kenari, S.; Shaki, F. Acrylamide attenuated immune tissues’ function via induction of apoptosis and oxidative stress: Protection by l-carnitine. Hum. Exp. Toxicol., 2017, 1, 859-869.
[140]
Hamdy, S.M.; Shabaan, A.M.; Abdel Latif, A.K.M.; Abdel-Aziz, A.M.; Amin, A.M. Protective effect of Hesperidin and Tiger nut against Acrylamide toxicity in female rats. Exp. Toxicol. Pathol., 2017, 69(8), 580-588.
[141]
Al-Qahtani, F.A.; Arafah, M.; Sharma, B.; Siddiqi, N.J. Effects of alpha lipoic acid on acrylamide-induced hepatotoxicity in rats. Cell. Mol. Biol. (Noisy-le-grand), 2017, 63(6), 1-6.
[142]
Esmaeelpanah, E.; Razavi, B.M. Vahdati Hasani. F.; Hosseinzadeh, H. Evaluation of epigallocatechin gallate and epicatechin gallate effects on acrylamide-induced neurotoxicity in rats and cytotoxicity in PC 12 cells. Drug Chem. Toxicol., 2017, 26, 1-8.
[143]
Ghorbel, I.; Elwej, A.; Chaabene, M.; Boudawara, O.; Marrakchi, R.; Jamoussi, K.; Boudawara, T.S.; Zeghal, N. Effects of acrylamide graded doses on metallothioneins I and II induction and DNA fragmentation: Bochemical and histomorphological changes in the liver of adult rats. Toxicol. Ind. Health, 2017, 33(8), 611-622.
[144]
Kopanska, M.; Czech, J.; Zagata, P.; Dobrek, L.; Thor, P.; Formicki, G. Effect of the different doses of acrylamide on acetylocholinoesterase activity, thiol groups, malondialdehyde concentrations in hypothalamus and selected muscles of mice. J. Physiol. Pharmacol., 2017, 68(4), 565-571.
[145]
Aydın, B. Effects of argan oil on the mitochondrial function, antioxidant system and the activity of NADPH- generating enzymes in acrylamide treated rat brain. Biomed. Pharmacother., 2017, 87, 476-481.
[146]
He, Y.; Tan, D.; Bai, B.; Wu, Z.; Ji, S. Epigallocatechin-3-gallate attenuates acrylamide-induced apoptosis and astrogliosis in rat cerebral cortex. Toxicol. Mech. Methods, 2017, 27(4), 298-306.
[147]
Pan, X.; Wu, X.; Yan, D.; Peng, C.; Rao, C.; Yan, H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol. Lett., 2018, 15(288), 55-64.
[148]
Esmaeelpanah, E.; Razavi, B.M.; Vahdati Hasani, F.; Hosseinzadeh, H. Evaluation of epigallocatechin gallate and epicatechin gallate effects on acrylamide-induced neurotoxicity in rats and cytotoxicity in PC 12 cells. Drug Chem. Toxicol., 2017, 26, 1-8.
[149]
He, Y.; Tan, D.; Mi, Y.; Bai, B.; Jiang, D.; Zhou, X.; Ji, S. Effect of epigallocatechin-3-gallate on acrylamide-induced oxidative stress and apoptosis in PC12 cells. Hum. Exp. Toxicol., 2017, 36(10), 1087-1099.
[150]
Li, L.; Sun, H.Y.; Liu, W.; Zhao, H.Y.; Shao, M.L. Silymarin protects against acrylamide-induced neurotoxicity via Nrf2 signalling in PC12 cells. Food Chem. Toxicol., 2017, 102, 93-101.
[151]
Pan, X.; Yan, D.; Wang, D.; Wu, X.; Zhao, W.; Lu, Q.; Yan, H. Mitochondrion-mediated apoptosis induced by acrylamide is regulated by a balance between Nrf2 antioxidant and MAPK signaling pathways in PC12 cell. Mol. Neurobiol., 2017, 54(6), 4781-4794.
[152]
Boots, A.W.; Haenen, G.R.M.M. BastAalt. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharm., 2008, 585, 325-337.
[153]
Heijnen, C.G.; Haenen, G.R.M.M.; Oostveen, R.M.; Stalpers, E.M.; Bast, A. Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free Radic. Res., 2002, 36, 575-581.
[154]
Arts, M.J.T.J.; Dallinga, J.S.; Voss, H.P.; Haenen, G.R.M.M. A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chem., 2004, 88, 567-570.
[155]
Uthra, C.; Shrivastava, S.; Shukla, S. 11thInternational Symposium on Recent Advances in Environmental Health Research, Thirteenth international Symposium on Metal ions in Biology and Medicine. Poster session A, Mississippi 2014.
[156]
Zhang, L.; Zhang, H.; Miao, Y.; Wu, S.; Ye, H.; Yuan, Y. Protective effect of allicin against acrylamide-induced hepatocyte damage in vitro and in vivo. Food Chem. Toxicol., 2012, 50, 3306-3312.
[157]
Abdel-Daim, M.M.; Abd Eldaim, M.A.; Hassan, A.G. Trigonellafoenum-graecumameliorates acrylamide-induced toxicity in rats: Roles of oxidative stress, proinflammatory cytokines, and DNA damage. Biochem. Cell Biol., 2015, 93(3), 192-198.
[158]
Mansour, M.K.; Ibrahim, E.M.; Maha, M. El-Kholy, Sahar A. ElMadawy. Antioxidant and histopathological effect of catechin and neem leaves extract in acrylamide toxicity of rats. Egypt. J. Comp. Path. Clinic. Path, 2008, 21(1), 290-313.
[159]
Khan, M.R.; Afzaal, M.; Saeed, N.; Shabbir, M. Protective potential of methanol extract of Digeramuricata on acrylamide induced hepatotoxicity in rats. Afr. J. Biotechnol., 2011, 10(42), 8456-8464.
[160]
Yousif, A. Elhassaneen, Yahya A. AbdElhady. Onion Peel Powder Alleviate Acrylamide-Induced Cytotoxicity and Immunotoxicity in Liver Cell Culture. Life Sci. J., 2014, 11(7), 381-388.
[161]
Omar, H.E.M.; Abd-elghafar, S.K.; Fieda, I.O.; Ahmed, E.A. L-cysteine ameliorated testicular toxicity induced by acrylamide in rats. Eur. J. Biol. Res, 2015, 5(2), 1-8.
[162]
Zhao, M.; Liu, X.; Luo, Y.; Guo, H.; Hu, X.; Chen, F. Evaluation of protective effect of freeze-dried strawberry, grape, and blueberry powder on acrylamide toxicity in mice. J. Food Sci., 2015, 80(4), H869-H874.
[163]
Hasseeb, M.M.; Al-Hizab, F.A.; Hamouda, M.A-H. Impacts of grape seed oil supplementation against the acrylamide induced lesions in male genital organs of rats. Pak. Vet. J., 2013, 33(3), 282-286.
[164]
Bokhari, J.; Khan, M.R. Cardioprotective effect of Digera muricata (L) Mart. against the cardiotoxicity induced by acrylamide in rats. Nat. Prod. Chem. Res., 2014, 2(5), 174.
[165]
Sadek, K.M. Antioxidant and immunostimulant effect of carica papaya linn. Aqueous extract in acrylamide intoxicated rats. Acta Inform. Med., 2012, 20(3), 180-185.
[166]
Al-Serwi, R.H.; Ghoneim, F.M. The impact of vitamin E against acrylamide induced toxicity on skeletal muscles of adult male albino rat tongue: Light and electron microscopic study. J. Microscopy Ultrastruc, 2015, 3(3), 137-147.
[167]
Williams, J.R.; Rayburn, J.R.; Cline, G.R.; Sauterer, R.; Friedman, M. Potential protective effect of L-cysteine against the toxicity of acrylamide and furan in exposed Xenopuslaevis embryos: An interaction study. J. Agric. Food Chem., 2014, 62(31), 7927-7938.
[168]
Lee, J.H.; Lee, J.S.; Kim, Y.R.; Park, J.M.; Ha, S-J.; Kim, Y.E.; Baek, N.M.; Hong, E.K. Hispidin isolated from Phellinuslinteus protects against hydrogen peroxide-induced oxidative stress in pancreatic MIN6N b-cells. J. Med. Food, 2011, 14, 1431-1438.
[169]
Rodriguez-Ramiro, I.; Ramos, S.; Bravo, L.; Goya, L.; Martin, M.A. Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J. Nutr. Biochem., 2011, 22, 1186-1194.
[170]
Chen, W.; Shen, Y.; Su, H.; Zheng, X. Hispidin derived from Phellinuslinteus affords protection against acrylamide-induced oxidative stress in Caco-2 cells. Chem. Biol. Interact., 2014, 219, 83-89.
[171]
Rodriguez-Ramiro, I.; Martin, M.A.; Ramos, S.; Bravo, L.; Goya, L. Olive oil hydroxytyrosol reduces toxicity evoked by acrylamide in human Caco-2 cells by preventing oxidative stress. Toxicology, 2011, 288, 43-48.
[172]
Jiang, G.; Zhang, L.; Wang, H.; Chen, Q.; Wu, X.; Yan, X.; Chen, Y.; Xie, M. Protective effects of a Ganoderma atrum polysaccharide against acrylamide induced oxidative damage via a mitochondria mediated intrinsic apoptotic pathway in IEC-6 cells. Food Funct., 2018, 21, 9(2), 1133-1143.
[173]
Shi, H.; Hu, L.; Chen, S.; Bao, W.; Yang, S.; Zhao, X.; Sun, C. Metabolomics analysis of urine from rats administered with long-term, low-dose acrylamide by ultra-performance liquid chromatography-mass spectrometry. Xenobiotica, 2017, 47(5), 439-449.
[174]
Jin, X.; Coughlan, M.; Roberts, J.; Mehta, R.; Raju, J. Dietary acrylamide exposure in male F344 rats: Dataset of systemic oxidative stress and inflammation markers. Data Brief, 2016, 14(7), 460-467.
[175]
Collí-Dulá, R.C.; Friedman, M.A.; Hansen, B.; Denslow, N.D. Transcriptomics analysis and hormonal changes of male and female neonatal rats treated chronically with a low dose of acrylamide in their drinking water. Toxicol. Rep., 2016, 19(3), 414-426.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2019
Page: [100 - 113]
Pages: 14
DOI: 10.2174/1871524919666190207160236
Price: $58

Article Metrics

PDF: 49
HTML: 5
EPUB: 1
PRC: 1