In silico Defining the Repeat-containing Proteins in the Acinetobacter baumannii Proteome, a Great Reservoir of Templates for Synthetic Biology

Author(s): Mohammad Reza Rahbar, Mahboubeh Zarei, Navid Nezafat, Manica Negahdaripour, Younes Ghasemi*.

Journal Name: Current Chemical Biology

Volume 13 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Acinetobacter baumannii is an important nosocomial pathogen with great ability to resist antibiotics. Tandem repeat proteins, abundant in prokaryotic proteomes, attract attention due to their role in virulence and various biological processes. Defining repeat- containing proteins may pave the way to find novel therapeutic targets as well as vaccine candidate and give pieces of evidence of mechanisms of evolution and adaptation of organisms to various environmental conditions.

Objective: In the present study, we employed bioinformatics tools to define repeatcontaining proteins within A. baumannii proteome for emphasizing the existence of natural sources for synthesizing novel therapeutic and diagnosis material.

Results: We defined various kinds of repeat modules in a number of proteins and compared the abundance of these proteins in some closely related species. No significant difference was observed in the count of repeat-containing proteins in different species. But the existence of some important virulence factors is mentionable in our screening.

Conclusion: Repeat containing proteins are important biological determinants of A. baumannii and are well worth researching for finding drug targets and vaccine candidates. These proteins can be served as a template for designing and synthesizing peptides for therapeutic and diagnostic approaches.

Keywords: Acinetobacter baumannii, repeat containing proteins, tandem repeat, bioinformatics, In silico, nosocomial pathogen, moraxellaceae.

[1]
Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a successful pathogen. Clin Microbiol Rev 2008; 21(3): 538-82.
[2]
Cerqueira GM, Peleg AY. Insights into acinetobacter baumannii pathogenicity. IUBMB Life 2011; 63(12): 1055-60.
[3]
Durante-Mangoni E, Zarrilli R. Global spread of drug-resistant acinetobacter baumannii: Molecular epidemiology and management of antimicrobial resistance. Future Microbiol 2011; 6(4): 407-22.
[4]
Durante-Mangoni E, Utili R, Zarrilli R. Combination therapy in severe acinetobacter baumannii infections: An update on the evidence to date. Future Microbiol 2014; 9(6): 773-89.
[5]
Landau GM, Schmidt JP, Sokol D. An algorithm for approximate tandem repeats. J Comput Biol 2001; 8(1): 1-18.
[6]
Cheng J, Xue H, Zhao X. Variation of serine-aspartate repeats in membrane proteins possibly contributes to staphylococcal microevolution. PLoS One 2012; 7(4)e34756
[7]
Persi E, Wolf YI, Koonin EV. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat Commun 2016; 7: 13570.
[8]
Jorda J, Kajava AV. T-REKS: Identification of Tandem repeats in sequences with a K-meanS based algorithm. Bioinformatics 2009; 25(20): 2632-8.
[9]
Kobe B, Kajava AV. When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem Sci 2000; 25(10): 509-15.
[10]
Andrade MA, Perez-Iratxeta C, Ponting CP. Protein repeats: Structures, functions, and evolution. J Struct Biol 2001; 134(2-3): 117-31.
[11]
Forrer P, Stumpp MT, Binz HK, Plückthun A. A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett 2003; 539(1-3): 2-6.
[12]
De Gregorio E, Del Franco M, Martinucci M, Roscetto E, Zarrilli R, Di Nocera PP. Biofilm-associated proteins: News from acinetobacter. BMC Genomics 2015; 16(1): 933.
[13]
Rahbar MR, Rasooli I, Gargari SLM, Amani J, Fattahian Y. In silico analysis of antibody triggering biofilm associated protein in acinetobacter baumannii. J Theor Biol 2010; 266(2): 275-90.
[14]
Bentancor LV, Camacho-Peiro A, Bozkurt-Guzel C, Pier GB, Maira-Litrán T. Identification of Ata, a multifunctional trimeric autotransporter of acinetobacter baumannii. J Bacteriol 2012; 194(15): 3950-60.
[15]
Consortium U. UniProt: The universal protein knowledgebase. Nucleic Acids Res 2017; 45(D1): D158-69.
[16]
Letunic I, Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44(W1): W242-5.
[17]
Yu C-S, Cheng C-W, Su W-C, et al. CELLO2GO: A web server for protein subcellular localization prediction with functional gene ontology annotation. PLoS One 2014; 9(6)e99368
[18]
Newman AM, Cooper JB. XSTREAM: A practical algorithm for identification and architecture modeling of tandem repeats in protein sequences. BMC Bioinformatics 2007; 8(1): 1.
[19]
Wang Y, Coleman-Derr D, Chen G, Gu YQ. OrthoVenn: A web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2015; 43(W1): W78-84.
[20]
Kimura Y, Miyamoto T, Aoki K, et al. Analysis of IMP-1 type metallo-β-lactamase-producing acinetobacter radioresistens isolated from companion animals. J Infect Chemother 2017; 23(9): 655-7.
[21]
de Vries SP, van Hijum SA, Schueler W, et al. Genome analysis of moraxella catarrhalis strain RH4, a human respiratory tract pathogen. J Bacteriol 2010; 192(14): 3574-83.
[22]
Embers ME, Doyle LA, Whitehouse CA, Selby EB, Chappell M, Philipp MT. Characterization of a moraxella species that causes epistaxis in macaques. Vet Microbiol 2011; 147(3): 367-75.
[23]
Calcutt MJ, Foecking MF, Martin NT, Mhlanga-Mutangadura T, Reilly TJ. Draft genome sequence of moraxella bovoculi strain 237T (ATCC BAA-1259T) isolated from a calf with infectious bovine keratoconjunctivitis. Genome Announc 2014; 2(3): e00612-4.
[24]
Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A. Designing repeat proteins: Well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 2003; 332(2): 489-503.
[25]
Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ. Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Des Sel 2014; 27(10): 325-30.
[26]
Shahbazi M, Haghkhah M, Rahbar MR, Nezafat N, Ghasemi Y. In silico sub-unit hexavalent peptide vaccine against an staphylococcus aureus biofilm-related infection. Int J Pept Res Ther 2016; 22(1): 101-17.
[27]
Nezafat N, Sadraeian M, Rahbar MR, et al. Production of a novel multi-epitope peptide vaccine for cancer immunotherapy in TC-1 tumor-bearing mice. Biologicals 2015; 43(1): 11-7.
[28]
Nezafat N, Eslami M, Negahdaripour M, Rahbar MR, Ghasemi Y. Designing an efficient multi-epitope oral vaccine against helicobacter pylori using immunoinformatics and structural vaccinology approaches. Mol Biosyst 2017; 13(4): 699-713.
[29]
Zarei M, Nezafat N, Rahbar MR, et al. Decreasing the immunogenicity of arginine deiminase enzyme via structure‐based computational analysis. J Biomol Struct Dyn 2019; 37(2): 523-36.
[30]
Sokol D, Benson G, Tojeira J. Tandem repeats over the edit distance. Bioinformatics 2007; 23(2): e30-5.
[31]
Ellegren H. Microsatellite mutations in the germline: Implications for evolutionary inference. Trends Genet 2000; 16(12): 551-8.
[32]
Fitch WM. Distinguishing homologous from analogous proteins. Syst Biol 1970; 19(2): 99-113.
[33]
Lee D, Redfern O, Orengo C. Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 2007; 8(12): 995-1005.
[34]
Adams MD, Goglin K, Molyneaux N, et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 2008; 190(24): 8053-64.
[35]
Barlow M. What antimicrobial resistance has taught us about horizontal gene transfer. Horizontal gene transfer. Methods Mol Biol 2009; 532: 397-411.
[36]
Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 2010; 44: 445-77.
[37]
Pellegrini M. Tandem repeats in proteins: Prediction algorithms and biological role. Front Bioeng Biotechnol 2015; 3: 143.
[38]
Kajava AV. Tandem repeats in proteins: From sequence to structure. J Struct Biol 2012; 179(3): 279-88.
[39]
Ponomarenko JV, Van Regenmortel MH. B cell epitope prediction.In: Jenny G, Philip EB, Eds.. Structural bioinformatics. 2nd ed. US: John Wiley & Sons 2009; pp. 849-79.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 2
Year: 2019
Page: [149 - 158]
Pages: 10
DOI: 10.2174/2212796813666190207143223
Price: $58

Article Metrics

PDF: 42
HTML: 2
EPUB: 1