Downregulation of TdT Expression through Splicing Modulation by Antisense Peptide Nucleic Acid (PNA)

Author(s): Soheila Montazersaheb, Masoumeh Kazemi, Elahe Nabat, Peter E. Nielsen*, Mohammad S. Hejazi*.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 2 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Background and Objective: Antisense oligonucleotides are able to modulate splicing patterns and offer therapeutic intervention for cancer and other diseases. Considering TdT potential as a target in cancer therapy, the present study aimed to investigate splicing alteration of TdT pre-mRNA in Molt-4 cells using peptide nucleic acid (PNA) octaarginine and cholic acid conjugates.

Method: We examined 16 mer PNAs targeting 5' and 3' junctions of intron 7 and addressed their mRNA splicing modulation effects using RT-PCR analysis. We also tested corresponding 2-base mismatch PNAs to confirm the sequence specificity. In addition, protien level of TdT, apoptosis induction and cell viability rate were analysed.

Results: PCR analysis showed that full match PNAs could modulate the splicing process, thereby producing a longer mRNA still including intron 7. PCR results also implied exon 7 skipping. In addition, reduced level of TdT protein in Molt-4 cells was observed. Downregulation of TdT level in PNA treated cells was accompanied by an increased rate of apoptosis and decreased the level of cell survival.

Conclusion: PNA-mediated splicing modulation can specifically downregulate TdT expression. TdT dowregulation results in apoptosis induction and reduced cell survival in Molt-4 cells. These observations could draw more attentions to develop PNA based strategies for TdT suppression and consequent apoptosis induction in acute lymphoblastic leukemia.

Keywords: PNA (peptide nucleic acid), Antisense, TdT, splicing inhibition, intron retention, exon skipping.

Abes, R.; Arzumanov, A.; Moulton, H.; Abes, S.; Ivanova, G.; Gait, M.; Iversen, P.; Lebleu, B. Arginine‐rich cell penetrating peptides: Design, structure-activity, and applications to alter pre‐mRNA splicing by steric‐block oligonucleotides. J. Pept. Sci., 2008, 14(4), 455-460.
Doyle, D.F.; Braasch, D.A.; Simmons, C.G.; Janowski, B.A.; Corey, D.R. Inhibition of gene expression inside cells by peptide nucleic acids: Effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry, 2001, 40(1), 53-64.
Nielsen, P.E.; Egholm, M.; Berg, R.H.; Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991, 254(5037), 1497-1500.
Rozners, E. Recent advances in chemical modification of peptide nucleic acids. J. Nucleic Acids, 2012, 2012
Nielsen, P.E. Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem. Biodivers., 2010, 7(4), 786-804.
Montazersaheb, S.; Hejazi, M.S.; Charoudeh, H.N. Potential of peptide nucleic acids in future therapeutic applications. Adv. Pharm. Bull., 2018, 8(4), 551-563.
Nielsen, P.E.; Shiraishi, T. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers. Artif. DNA PNA XNA, 2011, 2(3), 90-99.
Shakeel, S.; Karim, S.; Ali, A. Peptide nucleic acid (PNA)-a review. J. Chem. Technol. Biotechnol.: Int. Res. Process. Environ. Clean Technol., 2006, 81(6), 892-899.
Mologni, L.; Nielsen, P.E.; Gambacorti-Passerini, C. In vitro transcriptional and translational block of the bcl-2 gene operated by peptide nucleic acid. Biochem. Biophys. Res. Commun., 1999, 264(2), 537-543.
Nielsen, P.E. Gene targeting using peptide nucleic acid.In Oligonucleotide Synthesis; Springer, 2005, pp. 343-358.
Sazani, P.; Kole, R. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J. Clin. Invest., 2003, 112(4), 481-486.
Yang, S-P.; Song, S-T.; Song, H-F. Advancements of antisense oligonucleotides in the treatment of breast cancer. Acta Pharmacol. Sin., 2003, 24(4), 289-295.
Aartsma-Rus, A.; Van Ommen, G-J.B. Antisense-mediated exon skipping: A versatile tool with therapeutic and research applications. RNA, 2007, 13(10), 1609-1624.
Garcia-Blanco, M.A. Alternative splicing: Therapeutic target and tool.In Alternative Splicing and Disease; Springer, 2006, pp. 47-64.
Garcia-Blanco, M.A.; Baraniak, A.P.; Lasda, E.L. Alternative splicing in disease and therapy. Nat. Biotechnol., 2004, 22(5), 535.
Wahl, M.C.; Will, C.L.; Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell, 2009, 136(4), 701-718.
Sur, M.; AlArdati, H.; Ross, C.; Alowami, S. TdT expression in Merkel cell carcinoma: Potential diagnostic pitfall with blastic hematological malignancies and expanded immunohistochemical analysis. Mod. Pathol., 2007, 20(11), 1113.
Motea, E.A.; Berdis, A.J. Terminal deoxynucleotidyl transferase: The story of a misguided DNA polymerase. Biochim. Biophys. Acta, 2010, 1804(5), 1151-1166.
Di Santo, R.; Maga, G. Human terminal deoxynucleotidyl transferases as novel targets for anticancer chemotherapy. Curr. Med. Chem., 2006, 13(20), 2353-2368.
Christensen, L.; Fitzpatrick, R.; Gildea, B.; Petersen, K.H.; Hansen, H.F.; Koch, T.; Egholm, M.; Buchardt, O.; Nielsen, P.E.; Coull, J. Solid‐Phase synthesis of peptide nucleic acids. J. Pept. Sci., 1995, 1(3), 175-183.
Shiraishi, T.; Nielsen, P.E. Cellular delivery of peptide nucleic acids (PNAs).In Peptide Nucleic Acids; Springer, 2014, pp. 193-205.
Tarhriz, V.; Wagner, K.D.; Masoumi, Z.; Molavi, O.; Hejazi, M.S.; Ghanbarian, H. CDK9 regulates apoptosis of myoblast cells by modulation of microRNA‐1 expression. J. Cell. Biochem., 2018, 119(1), 547-554.
Shiraishi, T.; Nielsen, P.E. Enhanced delivery of cell-penetrating peptide-peptide nucleic acid conjugates by endosomal disruption. Nat. Protoc., 2006, 1(2), 633.
Shiraishi, T.; Eysturskarð, J.; Nielsen, P.E. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions. BMC Cancer, 2010, 10(1), 342.
Motea, E.A.; Lee, I.; Berdis, A.J. A non-natural nucleoside with combined therapeutic and diagnostic activities against leukemia. ACS Chem. Biol., 2012, 7(6), 988-998.
Koc, Y.; Urbano, A.; Sweeney, E.; McCaffrey, R. Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia, 1996, 10(6), 1019-1024.
Shiraishi, T.; Nielsen, P.E. Down-regulation of MDM2 and activation of p53 in human cancer cells by antisense 9-aminoacridine-PNA (peptide nucleic acid) conjugates. Nucleic Acids Res., 2004, 32(16), 4893-4902.
Karras, J.G.; Maier, M.A.; Lu, T.; Watt, A.; Manoharan, M. Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-α chain. Biochemistry, 2001, 40(26), 7853-7859.
Shiraishi, T.; Nielsen, P.E. Nanomolar cellular antisense activity of peptide nucleic acid (PNA) cholic acid (“umbrella”) and cholesterol conjugates delivered by cationic lipids. Bioconjug. Chem., 2012, 23(2), 196-202.
Pankratova, S.; Nielsen, B.N.; Shiraishi, T.; Nielsen, P.E. PNA-mediated modulation and redirection of Her-2 pre-mRNA splicing: Specific skipping of erbB-2 exon 19 coding for the ATP catalytic domain. Int. J. Oncol., 2010, 36(1), 29-38.
Yang, J.; Yu, Y.; Hamrick, H.E.; Duerksen-Hughes, P.J. ATM, ATR and DNA-PK: Initiators of the cellular genotoxic stress responses. Carcinogenesis, 2003, 24(10), 1571-1580.
Mickelsen, S.; Snyder, C.; Trujillo, K.; Bogue, M.; Roth, D.B.; Meek, K. Modulation of terminal deoxynucleotidyltransferase activity by the DNA-dependent protein kinase. J. Immunol., 1999, 163(2), 834-843.
Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine., 2006, 12(9), 440-450.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [168 - 178]
Pages: 11
DOI: 10.2174/1389201020666190206202650
Price: $58

Article Metrics

PDF: 12