Theoretical Investigation of Design Space for Multi Layer Drug Eluting Bioresorbable Suture Threads

Author(s): Tommaso Casalini*, Filippo Rossi, Luisa Brizielli, Giuseppe Perale.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The work presented here is focused on the development of a comprehensive theoretical model for the description of drug release from a double - layer bioresorbable suture thread and the therapeutic efficacy of the active compounds delivered in the surrounding tissue.

Methods: In particular, the system under investigation is composed of a core of slow-degrading polylactic- acid-co-ε-caprolactone (PLCL), where an antibiotic compound (Vancomycin) is loaded, surrounded by a shell of a fast-degrading polylactic-co-glycolic acid (PLGA) which contains an anesthetic drug (Lidocaine hydrochloride) for the post-surgical pain relief.

Results: This system is of potential interest for the combined effects provided by the different active molecules, but the different release and polymer degradation dynamics, as well as their mutual influence, do not allow an intuitive a priori evaluation of device behavior, which can be rationalized through mathematical modeling. The model takes into account the main involved phenomena (polymer degradation and diffusion of the drugs within the device and the tissue, where they are metabolized) and their synergic effects on the overall system behavior.

Conclusion: Model results are discussed in order to quantify the impact of the main design parameters on device performances, thanks to the use of phase diagrams (which show drug effect in time and space) whose insights are summarized in order to determine a design space according to the specific needs.

Keywords: Suture thread, poly-lactic-acid-co-ε-caprolactone (PLCL), PLGA, Lidocaine hydrochloride, priori evaluation, design space.

[1]
Johnson, N.R.; Wang, Y.D. Drug delivery systems for wound healing. Curr. Pharm. Biotechnol., 2015, 16, 621-629.
[2]
Sanjay, S.T.; Dou, M.W.; Fu, G.L.; Xu, F.; Li, X.J. Controlled drug delivery using microdevices. Curr. Pharm. Biotechnol., 2016, 17, 772-787.
[3]
Dinda, S.C.; Pattnaik, G. Nanobiotechnology-based drug delivery in brain targeting. Curr. Pharm. Biotechnol., 2013, 14, 1264-1274.
[4]
Helary, C.; Desimone, M.F. Recent advances in biomaterials for tissue engineering and controlled drug delivery. Curr. Pharm. Biotechnol., 2015, 16, 635-645.
[5]
Schoubben, A.; Blasi, P.; Giovagnoli, S.; Perioli, L.; Rossi, C.; Ricci, M. Novel composite microparticles for protein stabilization and delivery. Eur. J. Pharm. Sci., 2009, 36, 226-234.
[6]
Shi, M.; Yang, Y.Y.; Chaw, C.S.; Goh, S.H.; Moochhala, S.M.; Ng, S.; Heller, J. Double walled POE/PLGA microspheres: Encapsulation of water-soluble and water-insoluble proteins and their release properties. J. Control. Release, 2003, 89, 167-177.
[7]
Mohtaram, N.K.; Montgomery, A.; Willerth, S.M. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed. Mater., 2013, 8(2), 022001.
[8]
Freiberg, S.; Zhu, X. Polymer microspheres for controlled drug release. Int. J. Pharm., 2004, 282, 1-18.
[9]
Rui, J.; Dadsetan, M.; Runge, M.B.; Spinner, R.J.; Yaszemski, M.J.; Windebank, A.J.; Wang, H. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: In vitro characterization and application in polycaprolactone fumarate nerve conduits. Acta Biomater., 2012, 8, 511-518.
[10]
de Boer, R.; Knight, A.M.; Spinner, R.J.; Malessy, M.J.A.; Yaszemski, M.J.; Windebank, A.J. In vitro and in vivo release of nerve growth factor from biodegradable poly-lactic-co-glycolic-acid microspheres. J. Biomed. Mater. Res. A, 2010, 95A, 1067-1073.
[11]
Stevanovic, M.; Uskokovic, D. Poly(lactide-co-glycolide)-based Micro and nanoparticles for the controlled drug delivery of vitamins. Curr. Nanosci., 2009, 5, 1-14.
[12]
Patel, M.M.; Zeles, M.G.; Manning, M.C.; Randolph, T.W.; Anchordoquy, T.J. Degradation kinetics of high molecular weight poly (L-lactide) microspheres and release mechanism of lipid: DNA complexes. J. Pharm. Sci.-US, 2004, 93, 2573-2584.
[13]
Seyednejad, H.; Ghassemi, A.H.; van Nostrum, C.F.; Vermonden, T.; Hennink, W.E. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J. Control. Release, 2011, 152, 168-176.
[14]
Ikada, Y.; Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun., 2000, 21, 117-132.
[15]
Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci., 2007, 32, 762-798.
[16]
Alexis, F. Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym. Int., 2005, 54, 36-46.
[17]
Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems-A review. Int. J. Pharm., 2011, 415, 34-52.
[18]
Perale, G.; Hilborn, J. Bioresorbable polymers for biomedical applications; Woodhead Publishing, 2017.
[19]
Li, S.M. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J. Biomed. Mater. Res., 1999, 48, 342-353.
[20]
von Burkersroda, F.; Schedl, L.; Gopferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002, 23, 4221-4231.
[21]
Grizzi, I.; Garreau, H.; Li, S.; Vert, M. Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials, 1995, 16, 305-311.
[22]
Grassi, M. Understanding drug release and absorption mechanisms: A physical and mathematical approach; CRC Press: Boca Raton, 2007.
[23]
Lee, W.L.; She, Y.C.; Widjaja, E.; Chong, H.C.; Tan, N.S.; Loo, S.C.J. Fabrication and drug release study of double-layered microparticles of various sizes. J. Pharm. Sci-US., 2012, 101, 2787-2797.
[24]
Lee, W.L.; Shi, W.X.; Low, Z.Y.; Li, S.Z.; Loo, S.C.J. Modeling of drug release from biodegradable triple-layered microparticles. J. Biomed. Mater. Res. A, 2012, 100A, 3353-3362.
[25]
Lao, L.L.; Peppas, N.A.; Boey, F.Y.C.; Venkatraman, S.S. Modeling of drug release from bulk-degrading polymers. Int. J. Pharm., 2011, 418, 28-41.
[26]
Sackett, C.K.; Narasimhan, B. Mathematical modeling of polymer erosion: Consequences for drug delivery. Int. J. Pharm., 2011, 418, 104-114.
[27]
Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J. Control. Release, 2014, 190, 75-81.
[28]
Rothstein, S.N.; Federspiel, W.J.; Little, S.R. A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials, 2009, 30, 1657-1664.
[29]
Nuti, S.; Ruimi, A.; Reddy, J.N. Modeling the dynamics of filaments for medical applications. Int. J. Nonlin. Mech., 2014, 66, 139-148.
[30]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm., 2008, 364, 328-343.
[31]
Siepmann, J.; Siepmann, F. Modeling of diffusion controlled drug delivery. J. Control. Release, 2012, 161, 351-362.
[32]
Casalini, T.; Rossi, F.; Lazzari, S.; Perale, G.; Masi, M. mathematical modeling of PLGA microparticles: From polymer degradation to drug release. Mol. Pharm., 2014, 11, 4036-4048.
[33]
Casalini, T.; Masi, M.; Perale, G. Drug eluting sutures: A model for in vivo estimations. Int. J. Pharm., 2012, 429, 148-157.
[34]
Perale, G.; Casalini, T.; Barri, V.; Muller, M.; Maccagnan, S.; Masi, M. Lidocaine release from polycaprolactone threads. J. Appl. Polym. Sci., 2010, 117, 3610-3614.
[35]
Marucci, M.; Ragnarsson, G.; von Corswant, C.; Welinder, A.; Jarke, A.; Iselau, F.; Axelsson, A. Polymer leaching from film coating: Effects on the coating transport properties. Int. J. Pharm., 2011, 411, 43-48.
[36]
Frenning, G. Modelling drug release from inert matrix systems: From moving-boundary to continuous-field descriptions. Int. J. Pharm., 2011, 418, 88-99.
[37]
Bertrand, N.; Leclair, G.; Hildgen, P. Modeling drug release from bioerodible microspheres using a cellular automaton. Int. J. Pharm., 2007, 343, 196-207.
[38]
Gopferich, A.; Langer, R. Modeling of polymer erosion. Macromolecules, 1993, 26, 4105-4112.
[39]
Gopferich, A. Erosion of composite polymer matrices. Biomaterials, 1997, 18, 397-403.
[40]
Gopferich, A. Bioerodible implants with programmable drug release. J. Control. Release, 1997, 44, 271-281.
[41]
Siepmann, J.; Gopferich, A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. Rev., 2001, 48, 229-247.
[42]
Versypt, A.N.F.; Pack, D.W.; Braatz, R.D. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres - A review. J. Control. Release, 2013, 165, 29-37.
[43]
Ahmad, Z.; Zhang, H.B.; Farook, U.; Edirisinghe, M.; Stride, E.; Colombo, P. Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. J. R. Soc. Interface, 2008, 5, 1255-1261.
[44]
Pekarek, K.J.; Jacob, J.S.; Mathiowitz, E. Double-walled polymer microspheres for controlled drug-release. Nature, 1994, 367, 258-260.
[45]
Pekarek, K.J.; Dyrud, M.J.; Ferrer, K.; Jong, Y.S.; Mathiowitz, E. In vitro and in vivo degradation of double-walled polymer microspheres. J. Control. Release, 1996, 40, 169-178.
[46]
Nie, H.M.; Fu, Y.L.; Wang, C.H. Paclitaxel and suramin-loaded core/shell microspheres in the treatment of brain tumors. Biomaterials, 2010, 31, 8732-8740.
[47]
Wang, X.T.; Venkatraman, S.S.; Boey, F.Y.C.; Loo, J.S.C.; Tan, L.P. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials, 2006, 27, 5588-5595.
[48]
Champeau, M.; Thomassin, J.M.; Tassaing, T.; Jerome, C. Current manufacturing processes of drug-eluting sutures. Expert Opin. Drug Deliv., 2017, 14, 1293-1303.
[49]
Joseph, B.; George, A.; Gopi, S.; Kalarikkal, N.; Thomas, S. Polymer sutures for simultaneous wound healing and drug delivery - A review. Int. J. Pharm., 2017, 524, 454-466.
[50]
Ramkrishna, D. Population balances: Theory and applications to particulate systems in engineering; Academic Press: San Diego, CA, 2000.
[51]
Perale, G.; Casalini, T.; Masi, M. A new model of resorbable device degradation and drug release: Transient 1-dimension diffusional mode (vol 136, pg 196, 2009). J. Control. Release, 2010, 142, 490-490.
[52]
Rossi, F.; Casalini, T.; Raffa, E.; Masi, M.; Perale, G. Bioresorbable polymer coated drug eluting stent: A model study. Mol. Pharm., 2012, 9, 1898-1910.
[53]
Masaro, L.; Zhu, X.X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci., 1999, 24, 731-775.
[54]
Siepmann, J.; Elkharraz, K.; Siepmann, F.; Klose, D. How autocatalysis accelerates drug release from PLGA-based microparticles: A quantitative treatment. Biomacromolecules, 2005, 6, 2312-2319.
[55]
Bramfeldt, H.; Sarazin, P.; Vermette, P. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone). J. Biomed. Mater. Res. A, 2007, 83A, 503-511.
[56]
Billon, A.; Chabaud, L.; Gouyette, A.; Bouler, J.M.; Merle, C. Vancomycin biodegradable poly(lactide-co-glycolide) microparticles for bone implantation. Influence of the formulation parameters on the size, morphology, drug loading and in vitro release. J. Microencapsul., 2005, 22, 841-852.
[57]
Brouneus, F.; Karami, K.; Beronius, P.; Sundelof, L.O. Diffusive transport properties of some local anesthetics applicable for iontophoretic formulation of the drugs. Int. J. Pharm., 2001, 218, 57-62.
[58]
Veyries, M.L.; Couarraze, G.; Geiger, S.; Agnely, F.; Massias, L.; Kunzli, B.; Faurisson, F.; Rouveix, B. Controlled release of vancomycin from Poloxamer 407 gels. Int. J. Pharm., 1999, 192, 183-193.
[59]
Goodman, L.S.; Brunton, L.L.; Chabner, B.; Knollmann, B.C. Goodman & Gilman’s pharmacological basis of therapeutics; McGraw-Hill: New York, 2011.
[60]
Rybak, M.J.; Lomaestro, B.M.; Rotschafer, J.C.; Moellering, R.C.; Craig, W.A.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Vancomycin therapeutic guidelines: A Summary of Consensus Recommendations from the Infectious Diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis., 2009, 49, 325-327.
[61]
Holy, C.E.; Dang, S.M.; Davies, J.E.; Shoichet, M.S. In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials, 1999, 20, 1177-1185.
[62]
Ding, A.G.; Shenderova, A.; Schwendeman, S.P. Prediction of microclimate pH in poly(lactic-co-glycolic acid) films. J. Am. Chem. Soc., 2006, 128, 5384-5390.
[63]
Powell, M.F. Stability of Lidocaine in Aqueous-Solution - Effect of Temperature, Ph, Buffer, and Metal-Ions on Amide Hydrolysis. Pharm Res-Dordr, 1987, 4, 42-45.
[64]
Sjoberg, H.; Karami, K.; Beronius, P.; Sundelof, L.O. Ionization conditions for iontophoretic drug delivery. A revised pK(a) of lidocaine hydrochloride in aqueous solution at 25 degrees C established by precision conductometry. Int. J. Pharm., 1996, 141, 63-70.
[65]
Holgado, M.A.; Arias, J.L.; Cozar, M.J.; Alvarez-Fuentes, J.; Ganan-Calvo, A.M.; Fernandez-Arevalo, M. Synthesis of lidocaine-loaded PLGA microparticles by flow focusing - Effects on drug loading and release properties. Int. J. Pharm., 2008, 358, 27-35.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2019
Page: [332 - 345]
Pages: 14
DOI: 10.2174/1389201020666190206200411
Price: $58

Article Metrics

PDF: 18
HTML: 3