GPER Overexpression in Cervical Cancer Versus Premalignant Lesions: Its Activation Induces Different Forms of Cell Death

Author(s): Christian D.H. Silva , Annie R. Leal , Pablo C. Ortiz-Lazareno , Luis F.J. Suárez , Adrián R. de Arellano , Edgar I. Lopez-Pulido , José G.M. Barragan , Margarita M. Buelna , Judith R.D. Rodríguez , Paola Chabay , José F. Muñoz-Valle , Ana L. Pereira-Suárez* .

Journal Name: Anti-Cancer Agents in Medicinal Chemistry

Volume 19 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The effect of estrogen has been traditionally studied through the modulation of its alpha and beta nuclear receptors; however, the G Protein-Coupled Estrogen Receptor (GPER) has been recently involved in the pathology of numerous tumors. Although the study of GPER in cervical cancer has begun, its contribution still remains to be completely evaluated.

Objective: The purpose of this work was to determine the expression of this receptor in different degrees of cervical lesions and whether the stimulation with its specific agonist (G-1) modulated mechanisms of cell survival or cell death in cervical cancer cells.

Methods: Sections of 44 formalin-fixed paraffin-embedded blocks from patients were analyzed by automated immunohistochemistry. After the stimulation with G-1, proliferation was evaluated by the xCELLigence technology, the integrity of the mitochondrial membrane permeability by MitoCaptureTM fluorescence staining, apoptosis by flow cytometry, and senescence by the senescence-associated β-galactosidase kit.

Results: GPER was widely expressed in cervical cancer but not in its precursor lesions. The staining was predominantly cytoplasmic, although it was also important in the nucleus of the epithelial cells. G-1 inhibited proliferation, decreased the mitochondrial permeability, and increased the percentage of apoptosis in SiHa, HeLa, and C-33A. Only in C-33A, an increase of the cells in necrosis was observed, whereas SiHa was the only cell line in which senescence was evidenced.

Conclusion: GPER is a receptor associated with cervical cancer that inhibits the growth and induces different mechanisms of death in cells derived from uterine cervical cancer. It suggests that GPER can be considered a pharmacological target that prevents the development of cervical carcinogenesis.

Keywords: Cervical cancer, G1, GPER, apoptosis, cervical cancer cells, premalignant lesions.

[1]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144, 646-674.
[2]
Bronowicka-Klys, D.E.; Lianeri, M.; Jagodzinski, P.P. The role and impact of estrogens and xenoestrogen on the development of cervical cancer. Biomed. Pharmacother., 2016, 84, 1945-1953.
[3]
Son, J.; Park, Y.; Chung, S.H. Epithelial oestrogen receptor alpha is dispensable for the development of oestrogen-induced cervical neoplastic diseases. J. Pathol., 2018, 245, 147-152.
[4]
Auborn, K.J.; Woodworth, C.; DiPaolo, J.A.; Bradlow, H.L. The interaction between HPV infection and estrogen metabolism in cervical carcinogenesis. Int. J. Cancer, 1991, 49, 867-869.
[5]
Bosland, M.C. Sex steroids and prostate carcinogenesis: Integrated, multifactorial working hypothesis. Ann. N. Y. Acad. Sci., 2006, 1089, 168-176.
[6]
Brake, T.; Lambert, P.F. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc. Natl. Acad. Sci. USA, 2005, 102, 2490-2495.
[7]
Chung, S.H.; Shin, M.K.; Korach, K.S.; Lambert, P.F. Requirement for stromal estrogen receptor alpha in cervical neoplasia. Horm. Cancer, 2013, 4, 50-59.
[8]
Herber, R.; Liem, A.; Pitot, H.; Lambert, P.F. Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol., 1996, 70, 1873-1881.
[9]
Prossnitz, E.R.; Barton, M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat. Rev. Endocrinol., 2011, 7, 715-726.
[10]
Chung, S.H.; Wiedmeyer, K.; Shai, A.; Korach, K.S.; Lambert, P.F. Requirement for estrogen receptor alpha in a mouse model for human papillomavirus-associated cervical cancer. Cancer Res., 2008, 68, 9928-9934.
[11]
Ramachandran, B. Functional association of oestrogen receptors with HPV infection in cervical carcinogenesis. Endocr. Relat. Cancer, 2017, 24, R99-R108.
[12]
Riera-Leal, A.; De Arellano, R.A.; Ramirez-Lopez, I.G.; Lopez-Pulido, E.I.; Rodriguez, D.J.R.; Macias-Barragan, J.G.; Ortiz-Lazareno, P.C.; Jave-Suarez, L.F.; Artaza-Irigaray, C.; Arreola, T.S.; Montoya-Buelna, M.; Munoz-Valle, J.F.; Pereira-Suarez, A.L. Effects of 60 kDa prolactin and estradiol on metabolism and cell survival in cervical cancer: Coexpression of their hormonal receptors during cancer progression. Oncol. Rep., 2018, 40, 3781-3793.
[13]
Friese, K.; Kost, B.; Vattai, A.; Marme, F.; Kuhn, C.; Mahner, S.; Dannecker, C.; Jeschke, U.; Heublein, S. The G protein-coupled estrogen receptor (GPER/GPR30) may serve as a prognostic marker in early-stage cervical cancer. J. Cancer Res. Clin. Oncol., 2018, 144, 13-19.
[14]
Zhang, Q.; Wu, Y.Z.; Zhang, Y.M.; Ji, X.H.; Hao, Q. Activation of G-protein coupled estrogen receptor inhibits the proliferation of cervical cancer cells via sustained activation of ERK1/2. Cell Biochem. Funct., 2015, 33, 134-142.
[15]
Fitzwalter, B.E.; Thorburn, A. Recent insights into cell death and autophagy. FEBS J., 2015, 282, 4279-4288.
[16]
Chimento, A.; Casaburi, I.; Bartucci, M.; Patrizii, M.; Dattilo, R.; Avena, P.; Ando, S.; Pezzi, V.; Sirianni, R. Selective GPER activation decreases proliferation and activates apoptosis in tumor leydig cells. Cell Death Dis., 2013, 4, e747.
[17]
Chimento, A.; Casaburi, I.; Rosano, C.; Avena, P.; De Luca, A.; Campana, C.; Martire, E.; Santolla, M.F.; Maggiolini, M.; Pezzi, V.; Sirianni, R. Oleuropein and hydroxytyrosol activate GPER/ GPR30-dependent pathways leading to apoptosis of ER-negative SKBR3 breast cancer cells. Mol. Nutr. Food Res., 2014, 58, 478-489.
[18]
Bopassa, J.C.; Eghbali, M.; Toro, L.; Stefani, E. A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am. J. Physiol., 2010, 298, H16-H23.
[19]
Okamoto, M.; Mizukami, Y. GPER negatively regulates TNFalpha-induced IL-6 production in human breast cancer cells via NF-kappaB pathway. Endocr. J., 2016, 63, 485-493.
[20]
Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep., 2014, 15, 1139-1153.
[21]
Chimento, A.; Sirianni, R.; Casaburi, I.; Zolea, F.; Rizza, P.; Avena, P.; Malivindi, R.; De Luca, A.; Campana, C.; Martire, E.; Domanico, F.; Fallo, F.; Carpinelli, G.; Cerquetti, L.; Amendola, D.; Stigliano, A.; Pezzi, V. GPER agonist G-1 decreases Adrenocortical Carcinoma (ACC) cell growth in vitro and in vivo. Oncotarget, 2015, 6, 19190-19203.
[22]
Imesch, P.; Samartzis, E.P.; Dedes, K.J.; Fink, D.; Fedier, A. Histone deacetylase inhibitors down-regulate G-protein-coupled estrogen receptor and the GPER-antagonist G-15 inhibits proliferation in endometriotic cells. Fertil. Steril., 2013, 100, 770-776.
[23]
Lappano, R.; Rosano, C.; De Marco, P.; De Francesco, E.M.; Pezzi, V.; Maggiolini, M. Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Mol. Cell. Endocrinol., 2010, 320, 162-170.
[24]
Son, J.; Park, J.W.; Lambert, P.F.; Chung, S.H. Requirement of estrogen receptor alpha DNA-binding domain for HPV oncogene-induced cervical carcinogenesis in mice. Carcinogenesis, 2014, 35, 489-496.
[25]
Ramirez De Arellano, A.; Riera Leal, A.; Lopez-Pulido, E.I.; Gonzalez-Lucano, L.R.; Macias Barragan, J.; Del Toro Arreola, S.; Garcia-Chagollan, M.; Palafox-Sanchez, C.A.; Munoz-Valle, J.F.; Pereira-Suarez, A.L.A. 60 kDa prolactin variant secreted by cervical cancer cells modulates apoptosis and cytokine production. Oncol. Rep., 2018, 39, 1253-1260.
[26]
Cheng, S.B.; Graeber, C.T.; Quinn, J.A.; Filardo, E.J. Retrograde transport of the transmembrane estrogen receptor, G-protein-coupled-receptor-30 (GPR30/GPER) from the plasma membrane towards the nucleus. Steroids, 2011, 76, 892-896.
[27]
Kampa, M.; Pelekanou, V.; Notas, G.; Stathopoulos, E.N.; Castanas, E. The estrogen receptor: Two or more molecules, multiple variants, diverse localizations, signaling and functions. Are we undergoing a paradigm-shift as regards their significance in breast cancer? Hormones, 2013, 12, 69-85.
[28]
De Francesco, E.M.; Pellegrino, M.; Santolla, M.F.; Lappano, R.; Ricchio, E.; Abonante, S.; Maggiolini, M. GPER mediates activation of HIF1alpha/VEGF signaling by estrogens. Cancer Res., 2014, 74, 4053-4064.
[29]
Otto, C.; Rohde-Schulz, B.; Schwarz, G.; Fuchs, I.; Klewer, M.; Brittain, D.; Langer, G.; Bader, B.; Prelle, K.; Nubbemeyer, R.; Fritzemeier, K.H. G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol. Endocrinology, 2008, 149, 4846-4856.
[30]
Scaling, A.L.; Prossnitz, E.R.; Hathaway, H.J. GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast. Horm. Cancer, 2014, 5, 146-160.
[31]
Wang, D.; Hu, L.; Zhang, G.; Zhang, L.; Chen, C. G protein-coupled receptor 30 in tumor development. Endocrine, 2010, 38, 29-37.
[32]
Sanden, C.; Broselid, S.; Cornmark, L.; Andersson, K.; Daszkiewicz-Nilsson, J.; Martensson, U.E.; Olde, B.; Leeb-Lundberg, L.M. G-protein-coupled estrogen receptor 1/G protein-coupled receptor 30 localizes in the plasma membrane and traffics intracellularly on cytokeratin intermediate filaments. Mol. Pharmacol., 2011, 79, 400-410.
[33]
Madeo, A.; Maggiolini, M. Nuclear alternate estrogen receptor GPR30 mediates 17beta-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res., 2010, 70, 6036-6046.
[34]
Albanito, L.; Madeo, A.; Lappano, R.; Vivacqua, A.; Rago, V.; Carpino, A.; Oprea, T.I.; Prossnitz, E.R.; Musti, A.M.; Ando, S.; Maggiolini, M. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res., 2007, 67, 1859-1866.
[35]
Filardo, E.J.; Quinn, J.A.; Bland, K.I.; Frackelton, A.R., Jr Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol., 2000, 14, 1649-1660.
[36]
Holm, A.; Baldetorp, B.; Olde, B.; Leeb-Lundberg, L.M.; Nilsson, B.O. The GPER1 agonist G-1 attenuates endothelial cell proliferation by inhibiting DNA synthesis and accumulating cells in the S and G2 phases of the cell cycle. J. Vasc. Res., 2011, 48, 327-335.
[37]
Chan, Q.K.; Lam, H.M.; Ng, C.F.; Lee, A.Y.; Chan, E.S.; Ng, H.K.; Ho, S.M.; Lau, K.M. Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest. Cell Death Differ., 2010, 17, 1511-1523.
[38]
Wei, W.; Chen, Z.J.; Zhang, K.S.; Yang, X.L.; Wu, Y.M.; Chen, X.H.; Huang, H.B.; Liu, H.L.; Cai, S.H.; Du, J.; Wang, H.S. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo. Cell Death Dis., 2014, 5, e1428.
[39]
Pandey, D.P.; Lappano, R.; Albanito, L.; Madeo, A.; Maggiolini, M.; Picard, D. Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J., 2009, 28, 523-532.
[40]
Vivacqua, A.; Bonofiglio, D.; Recchia, A.G.; Musti, A.M.; Picard, D.; Ando, S.; Maggiolini, M. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol. Endocrinol., 2006, 20, 631-646.
[41]
Kimura, M.; Mizukami, Y.; Miura, T.; Fujimoto, K.; Kobayashi, S.; Matsuzaki, M. Orphan G protein-coupled receptor, GPR41, induces apoptosis via a p53/Bax pathway during ischemic hypoxia and reoxygenation. J. Biol. Chem., 2001, 276, 26453-26460.
[42]
Han, G.; Li, F.; Yu, X.; White, R.E. GPER: A novel target for non-genomic estrogen action in the cardiovascular system. Pharmacol. Res., 2013, 71, 53-60.
[43]
Gaudet, H.M.; Cheng, S.B.; Christensen, E.M.; Filardo, E.J. The G-protein coupled estrogen receptor, GPER: The inside and inside-out story. Mol. Cell. Endocrinol., 2015, 418(Pt 3), 207-219.
[44]
Ahola, T.M.; Manninen, T.; Alkio, N.; Ylikomi, T. G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells. Endocrinology, 2002, 143, 3376-3384.
[45]
Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol., 2007, 8, 729-740.
[46]
Bolton, J.L.; Thatcher, G.R. Potential mechanisms of estrogen quinone carcinogenesis. Chem. Res. Toxicol., 2008, 21, 93-101.
[47]
Thomas, P.; Pang, Y.; Filardo, E.J.; Dong, J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology, 2005, 146, 624-632.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 6
Year: 2019
Page: [783 - 791]
Pages: 9
DOI: 10.2174/1871520619666190206171509
Price: $58

Article Metrics

PDF: 17
HTML: 3