NF-κB-Induced Upregulation of miR-548as-3p Increases Invasion of NSCLC by Targeting PTEN

Author(s): Sakir Akgun, Hakan Kucuksayan, Osman N. Ozes, Ozge Can, Arsenal S. Alikanoglu, Mustafa Yildiz, Hakan Akca*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Non-Small Cell Lung Cancer (NSCLC) is an aggressive cancer type due to high metastatic capacity. Nuclear Factor Kappa B (NF-κB) is a consistently active transcription factor in malignant lung cancer cells and has crucial significance in NSCLC progression. It is also implicated in the transcriptional regulation of many genes including microRNAs (miRNAs) that function as tumor suppressor or oncogene. It has been increasingly reported that several miRNAs defined as gene members are induced by NF-κB. The present study aimed to find novel miRNAs that are regulated by NF-κB.

Methods: Chromatin İmmunoprecipitation Sequencing (ChIP-Seq) experiment and bioinformatic analysis were used to determine NF-κB-dependent miRNAs. Western blot analysis, quantitative real-time polymerase chain reaction (qRT-PCR), luciferase reporter gene assays were carried out to investigate the target genes of miRNAs. To determine biologic activity, transwell invasion and MTT assay were carried out on H1299 NSCLC cell line. miRNA expression level was evaluated in metastatic and non-metastatic tissue samples of NSCLC patients.

Results: ChIP-Seq and qRT-PCR experiments showed that miR-548as-3p is transcriptionally regulated by NF- κB in response to Tumor Necrosis Factor-α (TNF-α) treatment. Then, we found that tumor suppressor Phosphatase and Tension homolog (PTEN) is a direct target of miR-548as-3p. Furthermore, miR-548as-3p mediates phosphatidylinositol-3-OH kinase (PI3K)/Akt pathway and NF-κB-implicated genes including Matrix Metalloproteinases 9 (MMP9), Slug and Zeb1. We further showed that miR-548as-3p increased invasiveness of NSCLC cells and was upregulated in metastatic tumor tissues compared to non-metastatic ones.

Conclusion: All these findings provide a miRNAs-mediated novel mechanism for NF-κB signaling and that miR-548as-3p could be a biomarker for NSCLC metastasis.

Keywords: NF-kappa B, neoplasm metastasis, invasion, miR-548as-3p, carcinoma, non-small-cell lung, PTEN.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[2]
Morgensztern, D.; Ng, S.H.; Gao, F.; Govindan, R. Trends in stage distribution for patients with non-small cell lung cancer: A National cancer database survey. J. Thorac. Oncol., 2010, 5(1), 29-33.
[3]
Aggarwal, B.B. Nuclear factor-kappaB: The enemy within. Cancer Cell, 2004, 6(3), 203-208.
[4]
Baldwin, A.S., Jr The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu. Rev. Immunol., 1996, 14(1), 649-683.
[5]
Chaturvedi, M.M.; Sung, B.; Yadav, V.R.; Kannappan, R.; Aggarwal, B.B.N.F. -[kappa]B addiction and its role in cancer: ‘One size does not fit all’. Oncogene, 2011, 30(14), 1615-1630.
[6]
Karin, M. The beginning of the end: IκB Kinase (IKK) and NF-κB activation. J. Biol. Chem., 1999, 274(39), 27339-27342.
[7]
Karin, M.; Greten, F.R. NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol., 2005, 5(10), 749-759.
[8]
Li, J.; Jia, H.; Xie, L.; Wang, X.; Wang, X.; He, H.; Lin, Y.; Hu, L. Association of constitutive nuclear factor-kappaB activation with aggressive aspects and poor prognosis in cervical cancer. Int. J. Gynecol. Cancer, 2009, 19(8), 1421-1426.
[9]
Lin, Y.C.; Brown, K.; Siebenlist, U. Activation of NF-kappa B requires proteolysis of the inhibitor I kappa B-alpha: Signal-induced phosphorylation of I kappa B-alpha alone does not release active NF-kappa B. Proc. Natl. Acad. Sci. USA, 1995, 92(2), 552-556.
[10]
Zhang, J.; Sun, Q.; Zhang, Z.; Ge, S.; Han, Z.G.; Chen, W.T. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene, 2013, 32(1), 61-69.
[11]
Sun, Y.; Ai, X.; Shen, S.; Lu, S. NF-kappaB-mediated miR-124 suppresses metastasis of non-small-cell lung cancer by targeting MYO10. Oncotarget, 2015, 6(10), 8244-8254.
[12]
Mutlu, M.; Saatci, O.; Ansari, S.A.; Yurdusev, E.; Shehwana, H.; Konu, O.; Raza, U.; Sahin, O. miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer. Sci. Rep., 2016, 6, 32541.
[13]
Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060.
[14]
Zhou, R.; Hu, G.; Gong, A.Y.; Chen, X.M. Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res., 2010, 38(10), 3222-3232.
[15]
Cai, J.; Fang, L.; Huang, Y.; Li, R.; Yuan, J.; Yang, Y.; Zhu, X.; Chen, B.; Wu, J.; Li, M. miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res., 2013, 73(17), 5402-5415.
[16]
Ma, J.; Liu, J.; Wang, Z.; Gu, X.; Fan, Y.; Zhang, W.; Xu, L.; Zhang, J.; Cai, D. NF-kappaB-dependent microRNA-425 upregulation promotes gastric cancer cell growth by targeting PTEN upon IL-1beta induction. Mol. Cancer, 2014, 13, 40.
[17]
GeneXplain platform: TRANSFAC database. Available at. http://genexplain.com/transfac/ (Accessed Nov 13, 2016).
[18]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[19]
Ho, S.N.; Hunt, H.D.; Horton, R.M.; Pullen, J.K.; Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 1989, 77(1), 51-59.
[20]
Ozes, O.N.; Akca, H.; Mayo, L.D.; Gustin, J.A.; Maehama, T.; Dixon, J.E.; Donner, D.B. A phosphatidylinositol 3-kinase/ Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc. Natl. Acad. Sci. USA, 2001, 98(8), 4640-4645.
[21]
Georgakilas, G.; Vlachos, I.S.; Paraskevopoulou, M.D.; Yang, P.; Zhang, Y.; Economides, A.N.; Hatzigeorgiou, A.G. microTSS: Accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs. Nat. Commun., 2014, 5, 5700.
[22]
Ozsolak, F.; Poling, L.L.; Wang, Z.; Liu, H.; Liu, X.S.; Roeder, R.G.; Zhang, X.; Song, J.S.; Fisher, D.E. Chromatin structure analyses identify miRNA promoters. Genes Dev., 2008, 22(22), 3172-3183.
[23]
Nidai Ozes, O.; Mayo, L.D.; Gustin, J.A.; Pfeffer, S.R.; Pfeffer, L.M.; Donner, D.B.N.F. -[kappa]B activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999, 401(6748), 82-85.
[24]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[25]
Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543), 853-858.
[26]
Lau, N.C.; Lim, L.P.; Weinstein, E.G.; Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543), 858-862.
[27]
Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15524-15529.
[28]
Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; Croce, C.M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 2999-3004.
[29]
Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet., 2009, 10(10), 704-714.
[30]
Jansson, M.D.; Lund, A.H. MicroRNA and cancer. Mol. Oncol., 2012, 6(6), 590-610.
[31]
Iorio, M.V.; Croce, C.M. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med., 2012, 4(3), 143-159.
[32]
Wei, C-H.; Wu, G.; Cai, Q.; Gao, X-C.; Tong, F.; Zhou, R.; Zhang, R-G.; Dong, J-H.; Hu, Y.; Dong, X-R. MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J. Hematol. Oncol., 2017, 10(1), 125.
[33]
Liu, S.; Dong, H.; Dai, H.; Liu, D.; Wang, Z. MicroRNA-216b regulated proliferation and invasion of non-small cell lung cancer by targeting SOX9. Oncol. Lett., 2018, 15(6), 10077-10083.
[34]
Kang, M.; Shi, J.; Peng, N.; He, S. MicroRNA-211 promotes non-small-cell lung cancer proliferation and invasion by targeting MxA. OncoTargets Ther., 2017, 10, 5667-5675.
[35]
Zhou, R.; Zhou, X.; Yin, Z.; Guo, J.; Hu, T.; Jiang, S.; Liu, L.; Dong, X.; Zhang, S.; Wu, G. MicroRNA-574-5p promotes metastasis of non-small cell lung cancer by targeting PTPRU. Sci. Rep., 2016, 6, 35714.
[36]
Wang, D.; Cao, Q.; Qu, M.; Xiao, Z.; Zhang, M.; Di, S. MicroRNA-616 promotes the growth and metastasis of non-small cell lung cancer by targeting SOX7. Oncol. Rep., 2017, 38(4), 2078-2086.
[37]
Liu, C.; Yang, H.; Xu, Z.; Li, D.; Zhou, M.; Xiao, K.; Shi, Z.; Zhu, L.; Yang, L.; Zhou, R. microRNA-548l is involved in the migration and invasion of non-small cell lung cancer by targeting the AKT1 signaling pathway. J. Cancer Res. Clin. Oncol., 2015, 141(3), 431-441.
[38]
Zhan, Y.; Liang, X.; Li, L.; Wang, B.; Ding, F.; Li, Y.; Wang, X.; Zhan, Q.; Liu, Z. MicroRNA-548j functions as a metastasis promoter in human breast cancer by targeting Tensin1. Mol. Oncol., 2016, 10(6), 838-849.
[39]
Ni, X.F.; Zhao, L.H.; Li, G.; Hou, M.; Su, M.; Zou, C.L.; Deng, X. MicroRNA-548-3p and MicroRNA-576-5p enhance the migration and invasion of esophageal squamous cell carcinoma cells via NRIP1 down-regulation. Neoplasma, 2018, 65(6), 881-887.
[40]
Durand, J.K.; Baldwin, A.S. Targeting IKK and NF-kappaB for Therapy. Adv. Protein Chem. Struct. Biol., 2017, 107, 77-115.
[41]
Allavena, P.; Sica, A.; Solinas, G.; Porta, C.; Mantovani, A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol., 2008, 66(1), 1-9.
[42]
Cui, R.; Meng, W.; Sun, H.L.; Kim, T.; Ye, Z.; Fassan, M.; Jeon, Y.J.; Li, B.; Vicentini, C.; Peng, Y.; Lee, T.J.; Luo, Z.; Liu, L.; Xu, D.; Tili, E.; Jin, V.; Middleton, J.; Chakravarti, A.; Lautenschlaeger, T.; Croce, C.M. MicroRNA-224 promotes tumor progression in nonsmall cell lung cancer. Proc. Natl. Acad. Sci. USA, 2015, 112(31), E4288-E4297.
[43]
Meng, W.; Ye, Z.; Cui, R.; Perry, J.; Dedousi-Huebner, V.; Huebner, A.; Wang, Y.; Li, B.; Volinia, S.; Nakanishi, H.; Kim, T.; Suh, S.S.; Ayers, L.W.; Ross, P.; Croce, C.M.; Chakravarti, A.; Jin, V.X.; Lautenschlaeger, T. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma. Clin. Cancer Res., 2013, 19(19), 5423-5433.
[44]
Nidai Ozes, O.; Mayo, L.D.; Gustin, J.A.; Pfeffer, S.R.; Pfeffer, L.M.; Donner, D.B. NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature, 1999, 401, 82.
[45]
McLoughlin, N.M.; Mueller, C.; Grossmann, T.N. The therapeutic potential of PTEN modulation: Targeting strategies from gene to protein. Cell Chem. Biol., 2018, 25(1), 19-29.
[46]
Wang, P.; Guan, Q.; Zhou, D.; Yu, Z.; Song, Y.; Qiu, W. miR-21 inhibitors modulate biological functions of gastric cancer cells via PTEN/PI3K/mTOR pathway. DNA Cell Biol., 2018, 37(1), 38-45.
[47]
Li, J.; Li, C.; Li, H.; Zhang, T.; Hao, X.; Chang, J.; Xu, Y. MicroRNA30a5p suppresses tumor cell proliferation of human renal cancer via the MTDH/PTEN/AKT pathway. Int. J. Mol. Med., 2018, 41(2), 1021-1029.
[48]
Li, L.; Zhu, X.; Shou, T.; Yang, L.; Cheng, X.; Wang, J.; Deng, L.; Zheng, Y. MicroRNA-28 promotes cell proliferation and invasion in gastric cancer via the PTEN/PI3K/AKT signalling pathway. Mol. Med. Rep., 2018, 17(3), 4003-4010.
[49]
Li, L.; Zhang, H. MicroRNA-379 inhibits cell proliferation and invasion in glioma via targeting metadherin and regulating PTEN/AKT pathway. Mol. Med. Rep., 2018, 17(3), 4049-4056.
[50]
Hsu, Y.L.; Hung, J.Y.; Chang, W.A.; Jian, S.F.; Lin, Y.S.
Pan, Y.C.; Wu, C.Y.; Kuo, P.L. Hypoxic lung-cancer-derived extracellular vesicle microRNA-103a increases the oncogenic effects of macrophages by targeting PTEN. Mol. Ther., 2018, 26(2), 568-581.
[51]
Guo, J.; Xiao, Z.; Yu, X.; Cao, R. miR-20b promotes cellular proliferation and migration by directly regulating phosphatase and tensin homolog in prostate cancer. Oncol. Lett., 2017, 14(6), 6895-6900.
[52]
Dai, X.; Fang, M.; Li, S.; Yan, Y.; Zhong, Y.; Du, B. miR-21 is involved in transforming growth factor beta1-induced chemoresistance and invasion by targeting PTEN in breast cancer. Oncol. Lett., 2017, 14(6), 6929-6936.
[53]
Wu, W.; Chen, X.; Yu, S.; Wang, R.; Zhao, R.; Du, C. microRNA-222 promotes tumor growth and confers radioresistance in nasopharyngeal carcinoma by targeting PTEN. Mol. Med. Rep., 2018, 17(1), 1305-1310.
[54]
Liu, J.; Chen, W.; Zhang, H.; Liu, T.; Zhao, L. miR-214 targets the PTEN-mediated PI3K/Akt signaling pathway and regulates cell proliferation and apoptosis in ovarian cancer. Oncol. Lett., 2017, 14(5), 5711-5718.
[55]
Li, Y.; Gu, J.; Lu, H. The GAS5/miR-222 axis regulates proliferation of gastric cancer cells through the PTEN/Akt/mTOR pathway. Dig. Dis. Sci., 2017, 62(12), 3426-3437.
[56]
Hu, H.; Li, H.; He, Y. MicroRNA-17 downregulates expression of the PTEN gene to promote the occurrence and development of adenomyosis. Exp. Ther. Med., 2017, 14(4), 3805-3811.
[57]
Li, X.; Ding, Y.; Liu, N.; Sun, Q.; Zhang, J. MicroRNA760 inhibits cell proliferation and invasion of colorectal cancer by targeting the SP1mediated PTEN/AKT signalling pathway. Mol. Med. Rep., 2017, 16(6), 9692-9700.
[58]
Liu, F.; Zhao, X.; Qian, Y.; Zhang, J.; Zhang, Y.; Yin, R. MiR-206 inhibits Head and neck squamous cell carcinoma cell progression by targeting HDAC6 via PTEN/AKT/mTOR pathway. Biomed. Pharmacother., 2017, 96, 229-237.
[59]
Shao, P.; Qu, W.K.; Wang, C.Y.; Tian, Y.; Ye, M.L.; Sun, D.G.; Sui, J.D.; Wang, L.M.; Fan, R.; Gao, Z.M. MicroRNA-205-5p regulates the chemotherapeutic resistance of hepatocellular carcinoma cells by targeting PTEN/JNK/ANXA3 pathway. Am. J. Transl. Res., 2017, 9(9), 4300-4307.
[60]
Shen, J.; Niu, W.; Zhang, H.; Jun, M.; Zhang, H. Downregulation of MicroRNA-147 inhibits cell proliferation and increases the chemosensitivity of gastric cancer cells to 5-Fluorouracil by directly targeting PTEN. Oncol. Res., 2018, 26(2), 901-911.
[61]
Zhang, H.; Liu, A.; Feng, X.; Tian, L.; Bo, W.; Wang, H.; Hu, Y. MiR-132 promotes the proliferation, invasion and migration of human pancreatic carcinoma by inhibition of the tumor suppressor gene PTEN. Prog. Biophys. Mol. Biol., 2017.
[http://dx.doi.org/10.1016/ j.pbiomolbio.2017.09.019]
[62]
Wu, Y.; Song, Y.; Xiong, Y.; Wang, X.; Xu, K.; Han, B.; Bai, Y.; Li, L.; Zhang, Y.; Zhou, L. MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell. Physiol. Biochem., 2017, 43(3), 945-958.
[63]
Song, J.; Shao, Q.; Li, C.; Liu, H.; Li, J.; Wang, Y.; Song, W.; Li, L.; Wang, G.; Shao, Z.; Fu, R. Effects of microRNA-21 on apoptosis by regulating the expression of PTEN in diffuse large B-cell lymphoma. Medicine (Baltimore), 2017, 96(39), e7952.
[64]
Wei, H.; Cui, R.; Bahr, J.; Zanesi, N.; Luo, Z.; Meng, W.; Liang, G.; Croce, C.M. miR-130a deregulates PTEN and stimulates tumor growth. Cancer Res., 2017, 77(22), 6168-6178.
[65]
Han, Z.; Zhou, X.; Li, S.; Qin, Y.; Chen, Y.; Liu, H. Inhibition of miR-23a increases the sensitivity of lung cancer stem cells to erlotinib through PTEN/PI3K/Akt pathway. Oncol. Rep., 2017, 38(5), 3064-3070.
[66]
Bu, W.; Luo, T. miR-1297 promotes cell proliferation of non-small cell lung cancer cells: Involving in PTEN/Akt/Skp2 signaling pathway. DNA Cell Biol., 2017, 36(11), 976-982.
[67]
Bai, X.; Zhou, Y.; Chen, P.; Yang, M.; Xu, J. MicroRNA-142-5p induces cancer stem cell-like properties of cutaneous squamous cell carcinoma via inhibiting PTEN. J. Cell. Biochem., 2018, 119(2), 2179-2188.
[68]
Li, B.; Lu, Y.; Yu, L.; Han, X.; Wang, H.; Mao, J.; Shen, J.; Wang, B.; Tang, J.; Li, C.; Song, B. miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-kappaB/COX-2 activation. Chem. Biol. Interact., 2017, 277, 33-42.
[69]
Ling, J.W.; Lu, P.R.; Zhang, Y.B.; Jiang, S.; Zhang, Z.C. miR-367 promotes uveal melanoma cell proliferation and migration by regulating PTEN. Genet. Mol. Res., 2017, 16(3)
[70]
Liu, C.; Liu, Z.; Li, X.; Tang, X.; He, J.; Lu, S. MicroRNA-1297 contributes to tumor growth of human breast cancer by targeting PTEN/PI3K/AKT signaling. Oncol. Rep., 2017, 38(4), 2435-2443.
[71]
Xiao, J.; Tao, T.; Yin, Y.; Zhao, L.; Yang, L.; Hu, L. miR-144 may regulate the proliferation, migration and invasion of trophoblastic cells through targeting PTEN in preeclampsia. Biomed. Pharmacother., 2017, 94, 341-353.
[72]
Song, B.; Long, Y.; Liu, D.; Zhang, W.; Liu, C. MicroRNA-582 promotes tumorigenesis by targeting phosphatase and tensin homologue in colorectal cancer. Int. J. Mol. Med., 2017, 40(3), 867-874.
[73]
Wang, S.; Guo, D.; Li, C. Downregulation of miRNA-26b inhibits cancer proliferation of laryngeal carcinoma through autophagy by targeting ULK2 and inactivation of the PTEN/AKT pathway. Oncol. Rep., 2017, 38(3), 1679-1687.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 8
Year: 2019
Page: [1058 - 1068]
Pages: 11
DOI: 10.2174/1871520619666190206165215
Price: $58

Article Metrics

PDF: 37
HTML: 4