Network Pharmacology and Reverse Molecular Docking-Based Prediction of the Molecular Targets and Pathways for Avicularin Against Cancer

Author(s): Chaohui Duan, Yang Li, Xiaorui Dong, Weibin Xu, Yingli Ma*.

Journal Name: Combinatorial Chemistry & High Throughput Screening

Volume 22 , Issue 1 , 2019

Become EABM
Become Reviewer

Abstract:

Aim and Objective: Avicularin has been found to inhibit the proliferation of HepG-2 cells in vitro in the screening of our laboratory. We intended to explain the molecular mechanism of this effect. Therefore, the combined methods of reverse molecular docking and network pharmacology were used in order to illuminate the molecular mechanisms for Avicularin against cancer.

Materials and Methods: Potential targets associated with anti-tumor effects of Avicularin were screened by reverse molecular docking, then a protein database was established through constructing the drugprotein network from literature mining data, and the protein-protein network was built through an in-depth exploration of the relationships between the proteins, and then the network topology analysis was performed. Additionally, gene function and signaling pathways were analyzed by Go bio-enrichment and KEGG Pathway.

Results: The result showed that Avicularin was closely related to 16 targets associated with cancer, and it may significantly influence the pro-survival signals in MAPK signaling pathway that can activate and regulate a series of cellular activities and participate in the regulation of cell proliferation, differentiation, transformation and apoptosis.

Conclusion: The network pharmacology strategy used herein provided a powerful means for the mechanisms of action for bioactive ingredients.

Keywords: Avicularin, molecular mechanism, MAPK signaling pathway, network pharmacology, reverse molecular docking, molecular targets.

[1]
DeSantis, C.E.; Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities. CA Cancer J. Clin., 2016, 66(4), 7-30.
[2]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incid-ence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[3]
Huober, J.; von Minckwitz, G.; Denkert, C.; Tesch, H.; Weiss, E.; Zahm, D.M.; Belau, A.; Khandan, F.; Hauschild, M.; Thomssen, C.; Högel, B.; Darb-Esfahani, S.; Mehta, K.; Loibl, S. Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: Overall results from the Gepar-Trio study. Breast Cancer Res. Treat., 2010, 124(1), 133-140.
[4]
Yang, N.; Jia, X.; Sun, Z.; Sun, E.; Yan, H. Research progress in antitumor activity and mechanism of flavonoids. J. Chin. Med., 2015, 40(3), 373-381.
[5]
Fujimori, K.; Shibano, M. Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBPα-activated GLUT4-mediated glucose uptake in 3T3-L1 cells. J. Agric. Food Chem., 2013, 61(21), 5139-5147.
[6]
Vo, V.A.; Lee, J.W.; Chang, J.E.; Kim, J.Y.; Kim, N.H.; Lee, H.J.; Kim, S.S.; Chun, W.; Kwon, Y.S. Avicularin inhibits lipopolysaccharide -induced inflammatory response by suppressing ERK phosphorylation in RAW 264.7 macrophages. Biomol. Ther. (Seoul), 2012, 20(6), 532-527.
[7]
Guo, X.F.; Liu, J.P.; Ma, S.Q.; Zhang, P.; Sun, W.D. Avicularin reversed multidrug-resistance in human gastric cancer through enhancing Bax and BOK expressions. Biomed. Pharmacother., 2018, 103, 67-74.
[8]
Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[9]
Liu, X.; Wu, J.; Yan, M. Analysis of Sijunzi decoction based on network pharmacology. Chinese J. Experimental Formulae, 2017, 23(16), 194-202.
[10]
Liu, K.Q.; Liu, Z.P.; Hao, J.K.; Chen, L.; Zhao, X.M. Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 2012, 7(13), 126-137.
[11]
Fang, J.; Li, Y.; Liu, R. Discovery of multi-target-directed ligands against Alzheimer’s disease through systematic prediction of chemical-protein interactions. J. Chem. Inf. Model., 2015, 55(1), 149-164.
[12]
Azuaje, F.J.; Zhang, L.; Devaux, Y.; Wagner, D.R. Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci. Rep., 2011, 1, 52.
[13]
Nock, D.; Yang, S. Social Network Analysis; 2nded. Shanghai People's Publishing House: Shanghai. , 2012.
[14]
Ashburner, M.; Ball, C.A.; Blake, J.A. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 2000, 25(1), 25-29.
[15]
Yang, K.M.; Kim, W.; Bae, E.; Gim, J.; Weist, B.M.; Jung, Y.; Hyun, J.S.; Hernandez, J.B.; Leem, S.H.; Park, T.; Jeong, J.; Walsh, C.M.; Kim, S.J. DRAK2 participates in a negative feedback loop to control TGF-β/Smads signaling by binding to type I TGF-β receptor. Cell Reports, 2012, 2(5), 1286-1299.
[16]
Doherty, G.A.; Byrne, S.M.; Austin, S.C.; Scully, G.M.; Sadlier, D.M.; Neilan, T.G.; Kay, E.W.; Murray, F.E.; Fitzgerald, D.J. Regulation of theapoptosis-inducing kinase DRAK2 by cyclooxygenase-2 in colorectal cancer. Br. J. Cancer, 2009, 101(3), 483-491.
[17]
Chen, Q.G.; Zhou, W.; Han, T.; Du, S.Q.; Li, Z.H.; Zhang, Z.; Shan, G.Y.; Kong, C.Z. MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo. Tumour Biol., 2016, 37(2), 2095-2103.
[18]
Reyes-Gibby, C.C.; Wang, J.; Silvas, M.R.; Yu, R.; Yeung, S.C.; Shete, S. MAPK1/ERK2 as novel target genes for pain in head and neck cancer patients. BMC Genet., 2016, 17, 40.
[19]
Di Giacomo, D.; La Starza, R.; Barba, G.; Pierini, V.; Baldazzi, C.; Storlazzi, C.T.; Daniele, G.; Forghieri, F.; Borlenghi, E.; Testoni, N.; Mecucci, C. 4q12 translocations with GSX2 expression identify a CD7(+) acute myeloid leukaemia subset. Br. J. Haematol., 2015, 171(1), 141-145.
[20]
Han, J.; Lee, J.D.; Tobias, P.S.; Ulevitch, R.J. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J. Biol. Chem., 1993, 268(33), 25009-25014.
[21]
Zhang, N.; Ayral-Kaloustian, S.; Anderson, J.T.; Nguyen, T.; Das, S.; Venkatesan, A.M.; Brooijmans, N.; Lucas, J.; Yu, K.; Hollander, I.; Mallon, R. 5-Ureidobenzofuranone indoles as potent and efficacious inhibitors of PI3 kinase-alpha and mTOR for the treatment of breast cancer. Bioorg. Med. Chem. Lett., 2010, 20(12), 3526-3529.
[22]
Wang, S.; Li, Y.; Wang, J.; Chen, L.; Zhang, L.; Yu, H.; Hou, T. ADMET evaluation in drug discovery.12. Development of binary classification models for prediction of Herg potassium channel blockage. Mol. Pharm., 2012, 9(4), 996-1010.
[23]
Douglas, H.; Robert, A.W. Hallmarks of cancer: The next generation. Cell, 2011, 114(5), 646-674.
[24]
Tan, C.; Huang, X. Analysis of the mechanism of the treatment of kidney-yang deficiency syndrome based on protein interaction network. Chinese J. Info. Trad. Chinese Med, 2016, 23(2), 30-33.
[25]
Himes, S.R.; Sester, D.P.; Ravasi, T.; Cronau, S.L.; Sasmono, T.; Hume, D.A. The JNK are important for development and survival of macrophages. J. Immunol., 2006, 176(4), 2219-2228.
[26]
Wang, Y.; Zeigler, M.M.; Lam, G.K.; Hunter, M.G.; Eubank, T.D.; Khramtsov, V.V.; Tridandapani, S.; Sen, C.K.; Marsh, C.B. The role of the NADPH oxidase complex, p38 MAPK, and Akt in regulating human monocyte/macrophage survival. Am. J. Respir. Cell Mol. Biol., 2007, 36(1), 68-77.
[27]
Geest, C.R.; Coffer, P.J. MAPK signaling pathways in the regulation of hematopoiesis. J. Leukoc. Biol., 2009, 86(2), 237-250.
[28]
Schaeffer, H.J.; Weber, M.J. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Mol. Cell. Biol., 1999, 19(4), 2435-2444.
[29]
Avisetti, D.R.; Babu, K.S.; Kalivendi, S.V. Activation of p38/JNK pathway is responsible for embelin induced apoptosis in lung cancer cells: transitional role of reactive oxygen species. PLoS One, 2014, 9(1), e87050.
[30]
Metelmann, H.R.; Vu, T.T.; Do, H.T.; Le, T.N.B.; Hoang, T.H.A.; Phi, T.T.T. Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation. Clin. Plasma Med., 2013, 1, 30-35.
[31]
Regan, C.P.; Li, W.; Boucher, D.M. Erk5 null mice display multi-ple extraembryonic vascular and embryonic cardiovascular defects. Proc. Natl. Acad. Sci. USA, 2002, 99(14), 9248-9253.
[32]
Weldon, C.B.; Scandurro, A.B.; Rolfe, K.W. Identification of mito-gen-activated protein kinase kinase as a chemoresistant pathway in MCF-cells by using gene expression microarray. Surgery, 2002, 132(2), 293-301.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 22
ISSUE: 1
Year: 2019
Page: [4 - 12]
Pages: 9
DOI: 10.2174/1386207322666190206163409
Price: $58

Article Metrics

PDF: 25
HTML: 2
EPUB: 1
PRC: 1